CURRICULUM
DIPLOMA
in
Automobile Engineering
(Three year program-semester system)

Council for Technical Education and Vocational Training
Curriculum Development Division
Sanothimi, Bhaktapur

2013
Table of Content

1. **INTRODUCTION**: ... 4
2. **CURRICULUM TITLE**: ... 4
3. **PROGRAMME OBJECTIVES**: .. 4
4. **PROGRAMME DESCRIPTION**: .. 4
5. **DURATION**: .. 4
6. **TARGET GROUP**: .. 4
7. **GROUP SIZE**: ... 5
8. **TARGET LOCATION**: .. 5
9. **ENTRY QUALIFICATION**: .. 5
10. **ENTRY CRITERIA**: ... 5
11. **SELECTION**: .. 5
12. **MEDIUM OF INSTRUCTION**: .. 5
13. **PATTERN OF ATTENDANCE**: .. 5
14. **TEACHER AND STUDENT RATIO**: ... 5
15. **TEACHERS AND DEMONSTRATORS**: .. 5
16. **INSTRUCTIONAL MEDIA AND MATERIALS**: ... 5
17. **TEACHING LEARNING METHODOLOGIES**: .. 6
18. **APPROACH OF EDUCATION**: ... 6
19. **EXAMINATION AND MARKING SCHEME**: ... 6
20. **PROVISION OF BACK PAPER**: ... 6
21. **DISCIPLINARY AND ETHICAL REQUIREMENTS**: ... 6
22. **PASS MARKS**: .. 6
23. **GRADING SYSTEM**: ... 7
24. **CERTIFICATION AND DEGREE AWARDS**: ... 7
25. **CURRICULUM AND CREDITS**: ... 7
26. **PROVISION OF ELECTIVE** .. 7
27. **CAREER PATH**: .. 7
28. **CURRICULUM STRUCTURE**: .. 8

कम्युनिकेशन नेपाली .. 13

COMMUNICATION ENGLISH ... 15
ENGINEERING MATHEMATICS I .. 18
ENGINEERING PHYSICS I .. 21
ENGINEERING CHEMISTRY I .. 26
ENGINEERING DRAWING I ... 31
WORKSHOP TECHNOLOGY I .. 34
ELEMENT OF ELECTRICAL ENGINEERING ... 40
ENGINEERING MATHEMATICS II .. 44
ENGINEERING PHYSICS II ... 47
ENGINEERING CHEMISTRY II ... 52
ENGINEERING DRAWING II .. 56
ELECTRONICS ENGINEERING - I ... 58
MATERIAL SCIENCE .. 64
ENGINEERING MECHANICS .. 67
WORKSHOP TECHNOLOGY II .. 70
ELECTRONICS ENGINEERING- II .. 78
FLUID MECHANICS AND FLUID MACHINES ... 81
THERMAL ENGINEERING I ... 84
MACHINE DRAWING .. 87
ELEMENTS OF ENGINEERING ECONOMICS ... 89
STRENGTH OF MATERIALS .. 92
AUTOMOBILE TECHNOLOGY I .. 95
METROLOGY AND MEASUREMENT .. 100
COMPUTER APPLICATIONS ... 104
THERMAL ENGINEERING II ... 110
INDUSTRIAL MANAGEMENT ... 112
AUTOMOBILE TECHNOLOGY II ... 117
MACHINE ELEMENT AND MECHANISM ... 123
VEHICLE DENTING & PAINTING .. 126
MOTOR CYCLE REPAIR & MAINTENANCE ... 128
AUTOMOBILE AIR CONDITIONING .. 130
CONTROL SYSTEM ... 137
COMPUTER GRAPHICS (AUTO CAD) .. 140
FUNDAMENTALS OF HYDRAULICS AND PNEUMATICS ... 143
MACHINE DESIGN, ESTIMATING AND COSTING ... 143
AUTOMOBILE TECHNOLOGY III ... 149
TECHNICAL COMMUNICATION .. 155
AUTOMOTIVE ELECTRONICS .. 159
INDUSTRIAL HYGIENE AND SAFETY ... 166
PERSONNEL MANAGEMENT ... 169
ENTREPRENEURSHIP DEVELOPMENT ... 172
AUTOMOBILE TECHNOLOGY IV ... 176
VEHICLE DRIVING PRACTICE ... 180
INDUSTRIAL ATTACHMENT ... 181
EXPERTS INVOLVED IN CURRICULA DEVELOPMENT .. 182
I. DIPLOMA IN MECHANICAL ENGINEERING (DME), 2008 ... 182
II. DIPLOMA IN AUTOMOBILE ENGINEERING (DAE), 2013: ... 183
1. Introduction:
The automobile Engineering is genuine field in the engineering and technology sector. Many people in the world have been given emphasis for the broader application of automobile. This sector has been helping the world for the overall development and it has been creating wage and self employment opportunities both in public and private sectors.
This curriculum is designed with the purpose of producing middle level technical human resources equipped with knowledge and skills related to automobile Engineering so as to meet the demand of such workforce in the country to contribute in the national economic development of Nepal. The knowledge and skills incorporated in this curriculum will be helpful to deliver the individual needs as well national needs in the field of automobile engineering.

2. Curriculum title:
Diploma in Automobile Engineering (DAE)

3. Programme objectives:
This curriculum has following objectives to:
3.1 Produce middle level competent workforce in the field of automobile engineering.
3.2. Prepare such technicians who are able to work in the automobile sector related local workshop and industrial settings of the country.
3.3. Prepare such technical workforce who will demonstrate positive attitude and respect for the profession and socio-cultural values.
3.4. Help meet the demand of such technical workforce for the automobile industries of Nepal.
3.5. Reduce the dependence on employing such technicians from foreign countries.

4. Programme description:
This course is based on the job required to perform by an automobile technician at different related industries and organizations in Nepal. The Diploma in Automobile Engineering program extends over three years. Each year is divided into two semesters. There are six semesters in total within the period of three years. This curriculum includes the core subjects like physics, chemistry, and mathematics applicable in the field of auto-mechanical engineering. It also includes language subjects like Nepali and English applicable for the communication in the field of automobile. It also has provision of elective subjects in the specific areas of automobile engineering. The course structure and the subject wise contents that follow reflect the details of this curriculum. In short, this curriculum guides its implementers to produce competent and highly employable middle level technical workforce in the field of automobile engineering. The contents of individual subjects prescribed in the curriculum are incorporated in the light of "must to know and must to do" principle.

5. Duration:
The total duration of this curricular program is three years. Each year consists of two semesters of six months each.

6. Target group:
Individuals who have passed SLC or equivalent with English, Science, and Mathematics or completed related Technical School Leaving Certificate from CTEVT.
7. **Group size:**
The group size will be maximum of 30 (Thirty) in a batch.

8. **Target location:**
The target location will be all over Nepal.

9. **Entry qualification:**
Enter qualification of the applicant for diploma in Automobile Engineering programme should be SLC pass or equivalent or TSCL in related subject. S/he should have English, Science, and Compulsory Mathematics in SLC or as per provisions mentioned on CTEVT admission guidelines.

10. **Entry criteria:**
- Should submit SLC or equivalent certificate
- Should pass entrance examination as administered by CTEVT

11. **Selection:**
Applicants fulfilling the entry criteria will be selected for admission on the basis of merit.

12. **Medium of instruction:**
The medium of instruction will be in English and/or Nepali.

13. **Pattern of attendance:**
Minimum of 90% attendance in each subject is required to appear in the respective final examination.

14. **Teacher and student ratio:**
- For theory: As per the nature of the course.
- For practical/demonstration: 1:10
- For bench work: 1:8
- 75% of the technical teachers must be full timer.

15. **Teachers and demonstrators:**
- The disciplinary subjects’ related teachers should be a bachelor’s degree holder in the related area with three years experience in the related field.
- The demonstrators should be bachelor’s degree holder in the related area with two years experiences in training activities.
- The foundational subjects’ related teachers (refer to course codes SH and MG) should be master’s degree holder in the related area.

16. **Instructional media and materials:**
The following instructional media and materials are suggested for the effective instruction and demonstration.
- **Printed Media Materials** (Assignment sheets, Case studies, Handouts, Manuals, Information sheets, Individual training packets, Procedure sheets, Performance Check lists, Textbooks etc.).
- **Non-projected Media Materials** (Display, Models, Flip chart, Poster, Writing board etc.).
- **Projected Media Materials** (Opaque projections, Overhead transparencies, Slides etc.).
- **Audio-Visual Materials** (Audiotapes, Films, Slide-tape programs, Videodiscs, Videotapes etc.).
- **Computer-Based Instructional Materials** (Computer-based training, Interactive video etc.).
17. Teaching learning methodologies:
The methods of teachings for this curricular program will be a combination of several approaches; such as Illustrated talk, Lecture, Tutorial, Group Discussion, Demonstration, Simulation, Guided practice, Practical experiences, Fieldwork, Industry visit, Report writing, Term paper presentation, Case analysis, Tutoring, Role-playing, Heuristic, Project work and other independent learning.
- Theory: Lecture, Discussion, Seminar, Interaction, Assignment, Group work.
- Practical: Demonstration, Observation, Guided practice, Self-practice, Project work, Industries attachment and practice.

18. Approach of education:
There will be inductive and deductive approaches of education

19. Examination and marking scheme:
- The subject teacher will internally assess the students’ achievement in each subject during the course followed by a final examination at the end of each semester.
- A weightage of 20% for the internal assessment and 80% for the semester wise final examination will be allocated for theoretical components of a subject.
- The final semester examinations of all theory components will be administered through written tests.
- Generally the method of continuous assessment will be adopted for practical components.
- In some cases semester final examinations are also conducted for practical components as per needs.
- Student who fails in the internal assessment will not be allowed to sit in the semester final examination and will also be not allowed continuing the following semester.

20. Provision of back paper:
There will be the provision of back paper but a student must pass all the subjects of all six semesters within six years from the enrolment.

21. Disciplinary and ethical requirements:
- Intoxication, insubordination or rudeness to peers will result in immediate suspension followed by review by the disciplinary review committee of the institute.
- Dishonesty in academic or practice activities will result in immediate suspension followed by administrative review, with possible expulsion.
- Illicit drug use, bearing arms at institute, threats or assaults to peers, faculty or staff will result in immediate suspension, followed by administrative review with possible expulsion.

22. Pass marks:
The students must secure minimum of 40% marks both in theory and practical (Lab). Moreover, the students must secure minimum of 40% marks in the internal assessment and 40% in the final semester examination of each subject to pass all subjects offered in each semester.
23. Grading system:
The overall achievement of each student will be measured by a final aggregate percentage of all final semester examinations and graded as follow:

Marks division:
- Distinction : > or = 80 %
- First division : 65 % to < 80 %
- Second division : 50 % to 65 %
- Pass : 40 % to < 50 %

24. Certification and degree awards:
- Students who have passed all the components of all subjects of all six semesters are considered to have successfully completed the course.
- Students who have successfully completed the course will be awarded with a degree of Diploma in Automobile Engineering.

25. Curriculum and credits:
In this curriculum each subject has its code; full marks; and credit hours divided into lecture hours, tutorial hours, lab hours and practical hours.

26. Subjects Codes

<table>
<thead>
<tr>
<th>EG</th>
<th>XXXX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Course Serial Number</td>
<td>Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Year</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offering Department:
- EE: Electrical Engineering
- ME: Mechanical Engineering
- EX: Electronics Engineering
- CT: Computer Engineering
- CE: Civil Engineering
- SH: Science and Humanities
- AE: Automobile Engineering
- MG: Management

27. Provision of elective:
There will be provision of elective in any one of the following areas:
- Vehicle Denting and Painting
- Motor Cycle Repair and Maintenance
- Automobile Air Conditioning

28. Career path:
The graduates will be eligible for the position equivalent to non-gazetted 1st class (technical) as automobile technician or as prescribed by the Public Service Commission of Nepal. The graduate will be eligible for registration with the related council in the grade as mentioned in the related council act (if any).
Curriculum Structure:

DIPLOMA IN AUTOMOBILE ENGINEERING

YEAR: I

SEMESTER I

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Code No.</th>
<th>Subject</th>
<th>Mode</th>
<th>Total Hours</th>
<th>DISTRIBUTION OF MARKS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Lab</td>
</tr>
<tr>
<td>1</td>
<td>EG 1101 SH</td>
<td>Communication Nepali</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EG 1102 SH</td>
<td>Communication English</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EG 1103 SH</td>
<td>Engineering Mathematics I</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EG 1104 SH</td>
<td>Engineering Physics I</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EG 1105 SH</td>
<td>Engineering Chemistry I</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EG 1106 ME</td>
<td>Engineering Drawing I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EG 1107 ME</td>
<td>Workshop Technology I (Metal & wood work)</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EG 1108 EE</td>
<td>Elements of Electrical Engineering</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>19</td>
<td>3</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Code No.</th>
<th>Subject</th>
<th>Mode</th>
<th>Total Hours</th>
<th>DISTRIBUTION OF MARKS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Lab</td>
</tr>
<tr>
<td>1</td>
<td>EG 1201 SH</td>
<td>Engineering Mathematics II</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EG 1202 SH</td>
<td>Engineering Physics II</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>EG 1203 SH</td>
<td>Engineering Chemistry II</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>EG 1204 ME</td>
<td>Engineering Drawing II</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EG 1205 EX</td>
<td>Electronics Engineering I</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EG 1206 ME</td>
<td>Material Science</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EG 1207 ME</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EG 1208 ME</td>
<td>Workshop Technology II (Foundry & welding)</td>
<td>3</td>
<td>6</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>20</td>
<td>3</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>
YEAR: II
SEMESTER I

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Code No.</th>
<th>Subject</th>
<th>Mode</th>
<th>Total Hours</th>
<th>Theory</th>
<th>Practical</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assmt. Marks</td>
<td>Final Marks</td>
<td>Time Hours</td>
</tr>
<tr>
<td>1</td>
<td>EG 2101 EX</td>
<td>Electronic Engineering II</td>
<td>2</td>
<td>1 3</td>
<td>20 60 3 10 10 100</td>
<td>*Continuous assessment</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EG 2102 ME</td>
<td>Fluid Mechanics and Fluid Machines</td>
<td>3 1 1 5</td>
<td>20 60 3 10 10 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EG 2103 ME</td>
<td>Thermal Engineering I</td>
<td>3</td>
<td>1 1 5</td>
<td>20 60 3 10 10 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EG 2105 ME</td>
<td>Machine Drawing</td>
<td>4</td>
<td>4</td>
<td>60 40 4 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EG 2107 ME</td>
<td>Elements of Engineering Economics</td>
<td>2</td>
<td>2 10 40 1.5</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EG 2108 ME</td>
<td>Strength of Materials</td>
<td>3</td>
<td>2 5</td>
<td>20 60 3 10 10 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EG 2101 AE</td>
<td>Automotive Technology I</td>
<td>4 9 13</td>
<td>20 80 3 120 80 4 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EG 2102 AE</td>
<td>Metrology and Measurement</td>
<td>2 1 3</td>
<td>20 60 3 10 10 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230 170 950</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | 19 2 13 6 | 40 130 420 | 230 170 950 |

YEAR: II
SEMESTER II

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Code No.</th>
<th>Subject</th>
<th>Mode</th>
<th>Total Hours</th>
<th>Theory</th>
<th>Practical</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assmt. Marks</td>
<td>Final Marks</td>
<td>Time Hours</td>
</tr>
<tr>
<td>1</td>
<td>EG 2201 CT</td>
<td>Computer Application</td>
<td>2 2 4</td>
<td>10 40 1.5</td>
<td>30 20 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EG 2206 SH</td>
<td>Social Studies</td>
<td>2 2 4</td>
<td>10 40 1.5</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EG 2202 ME</td>
<td>Thermal Engineering II</td>
<td>3 1 1 5</td>
<td>20 60 3 10 10 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EG 2207 ME</td>
<td>Industrial Management</td>
<td>3</td>
<td>3</td>
<td>20 80 3 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EG 2201 AE</td>
<td>Automotive Technology II</td>
<td>4 11 15</td>
<td>20 80 3 150 100 4 350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EG 2202 AE</td>
<td>Machine Elements and Mechanism</td>
<td>3 1 4</td>
<td>20 60 3 10 10 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EG 2203 AE</td>
<td>Elective (One of the following)</td>
<td>2 5 7</td>
<td>10 40 1.5</td>
<td>60 40 3 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a.</td>
<td>Vehicle Denting & Painting</td>
<td></td>
<td></td>
<td>260 180 950</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b.</td>
<td>Motor Cycle Repair & Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c.</td>
<td>Automobile Air Conditioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | 19 1 18 2 | 40 110 400 | 260 180 950 |
DIPLOMA IN AUTOMOBILE ENGINEERING

YEAR: III

SEMESTER I

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Code No.</th>
<th>Subject</th>
<th>Mode</th>
<th>Total Hours</th>
<th>DISTRIBUTION OF MARKS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Marks</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EG 3103 EE</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>Final 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EG 3105 ME</td>
<td>Computer Graphics (AutoCAD)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Final 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EG 3106 ME</td>
<td>Fundamentals of Hydraulics and Pneumatics</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>Final 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>EG 3107 ME</td>
<td>Machine Design, Estimating and Costing</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>EG 3101 AE</td>
<td>Automotive Technology III</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>EG 3102 AE</td>
<td>Technical Communications</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Final 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>EG 3103 AE</td>
<td>Industrial Orientation</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>EG 3104 AE</td>
<td>Automotive Electronics</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>19</td>
<td>2</td>
<td>17</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>1000</td>
</tr>
</tbody>
</table>

YEAR: III

SEMESTER II

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Code No.</th>
<th>Subject</th>
<th>Mode</th>
<th>Total Hours</th>
<th>DISTRIBUTION OF MARKS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Marks</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EG 3203 ME</td>
<td>Industrial Hygiene and Safety</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EG 3205 ME</td>
<td>Personnel Management</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EG 3206 MG</td>
<td>Entrepreneurship Development</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>EG 3201 AE</td>
<td>Automotive Technology IV</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>Final 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>EG 3202 AE</td>
<td>Vehicle Driving Practice</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Final 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>EG 3203 AE</td>
<td>Industrial Attachment</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>Final 180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>950</td>
</tr>
</tbody>
</table>

Continuous assessment
First Year
(First and Second Semester)
First Semester

Subjects:

1. EG 1101 SH Communication Nepali
2. EG 1102 SH Communication English
3. EG 1103 SH Engineering Mathematics I
4. EG 1104 SH Engineering Physics I
5. EG 1105 SH Engineering Chemistry I
6. EG 1106 ME Engineering Drawing I
7. EG 1107 ME Workshop Technology I (Metal & Woodwork)
8. EG 1108 EE Elements of Electrical Engineering
कम्युनिकेशन नेपाली
ई.जी. १९०१ एस.एच.

वर्ष : प्रथम
सेमेस्टर : प्रथम

जम्मा : २ घण्टा / हत्ता
प्रारंभ : २ घण्टा / हत्ता
विशेष : घण्टा / हत्ता
प्रयोगात्मक : घण्टा / हत्ता
प्रयोगशाला : घण्टा / हत्ता

कोष्ठको परिचय

यस विषयमा विषयार्थहरूले भाषी व्यवसायमा प्रभावकरी डाढ़े सम्यक गरौं जान र सीपसंग सम्बन्धित नेपाली सत्त्वारात्मक भाषा, लेखन सीप, र कृति परिचयको झाँचा गरी जम्मा ३ बटा एकाइहरू माध्यम गरिएका छन् ।

कोष्ठको उद्देश्य :

यस पाठ्यांशको अध्ययनमा विषयार्थहरूले निम्नलिखित भाषिक कष्टमा विकास गरन सक्नेछन् ।

- आपो व्यवसायिक काख्य क्षेत्रमा प्रभावकरी सत्त्वार गरन
- आपो व्यवसायसंग सम्बन्धित विशेष लेखन सीप प्रदेशन गरन
- काख्य समापनमा आवश्यक परिस्थितितत्त्व संबाद गरन ।

पाठ्यांशको विषयवस्तु

एकाड १ सत्त्वारात्मक नेपाली भाषा

1.1 भाषिक मेध्यको परिचय

- मौखिक र लिखित
- जौनचारिक र अनौपचारिक
- अमानक र मानक
- सामान्य र प्रयोजनपरक (लिखित) मेध्यको सोदारण परिचय

1.2 दैनिक कार्यमा प्रयोग हुने भाषाको ज्ञान र प्रयोग

- अनुरोध तथा आदेश / निर्देश गर्ने भाषाको ज्ञान र प्रयोग
- सोबै गर्ने कामहरूमा प्रयोग हुने भाषाको ज्ञान र प्रयोग
- प्रश्नात्मक र बाणात्मक भाषाको ज्ञान र प्रयोग

एकाड २ लेखन सीप

2.1 बोध, बुद्धिपोष, साध्यकीर्तिकरण र शब्दमान्यताको ज्ञान र अभ्यास

- अनुच्छेद लेखन
- समाक लेखन
- बुझा लेखन
- सारांश लेखन
- पत्र लेखन (निमन्त्रण पत्र, सूचना, समापदकलाई चिठ्ठी र निवेदन आदि)
- निवेद्य लेखन
- प्रारंभिक तथा पारिभाषिक शब्दहरूको ज्ञान र प्रयोग
२.२ शब्द निम्नांको अभ्यास
- उपसर्गाः
- प्रत्यय, (कृत्वा तथा लग्दित)
- समास

२.३ प्राप्तिविधिक/पारिभाषिक शब्दहरूको शब्दश्रोत
- वेणीविश्वास (प्राप्तिविधिक शब्दका सम्भंज आवश्यक मात्र)
- अवर्य र व्याप्तिका लागि शब्दकोशको प्रयोगको अभ्यास

२.४ प्रतिवेदन लेखन

एकाहि ३ कृति परिचय

निम्न लिखित छाँचामा तलका कृतिको परिचय लेखने अभ्यास

३.१ कृतिहरू:
- सीयं उत्तरा
- ट्रेड कोम्पनी (कालिगढ तालिला : एक परिचय : इ.अ.स. पश्चिमाञ्चल क्याम्पस पीवरा)
- भूकम्पबाट सुरक्षित रहन गर्नु पूर्व तयारी: भूकम्प प्रविधि राष्ट्रीय समाज नेपाल
- इंजीनियरिङ्ग नेपाली: लालनाथ सुवेदी
- सिंचाई प्रविधि ज्ञान : भोजराज रेम्पी, वि. वि. पाट्यक्रम विकास केन्द्र

३.२ कृति परिचयको छाँचा
- कृतिको नाम:
- कृतिकारको नाम:
- कृतिका मुख्य विषय: (एक अनुच्छेद)
- कृतिको महत्त्व: (एक अनुच्छेद)
- कृतिले आफूलाई पारेको प्रमाण: (छोटो एक अनुच्छेद)
- कृतिको भाषा शैली: (छोटो एक अनुच्छेद)
- कृतिको कमी, कमजोरी र समाक्ष: (छोटो एक अनुच्छेद)

सिकाई सामग्रीहरू
- वि. वि. पाट्यक्रम विकास केन्द्र, अनिवार्य नेपाली शिखर निर्देशन, काठमाडौं
- लालनाथ सुवेदी, इंजीनियरिङ्ग नेपाली विभागी, पुस्तक भण्डार, भोटाहिङ्ग, काठमाडौं
- लालनाथ सुवेदी, नेपाली व्यक्तित्व, बोधि/रचना (सम्बन्धित अंश मात्र) विभागी, पुस्तक भण्डार, भोटाहिङ्ग, काठमाडौं
- गोरखाङ्गा, कालिपुर आदि परिवको सम्पदाकी, उपयोगी र लेखहरू
- प्रशिक्षणहरूले आफ्नो पुस्तक तयार गर्न बाजारमा पाइले सामग्री छानेर पढाउन सक्ने, तर परिश्रम महाशाखालाई यसको पूर्व जानाकारी दिनुपर्ने
Communication English
Code: EG 1102 SH

Year: I
Semester: I

Total: 2 hour/week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: hours/week

Course description:

This subject consists of four units related to communicative English; writing skills in English; English sounds and structures; and English conversation practices so as to equip the students with the skills and knowledge of communication in English language in order to have an effective and efficient job performance through occupational communication in the workplace.

Course objectives:

After the completion of this subject, students will be able to:
- Communicate in English language at work/job environment
- Define and use trade related technical terminologies
- Demonstrate various writing skills related to the job
- Demonstrate situational/structural conversation essential for job performance

Course contents:

Unit 1. Communicative English: [3]

1.1. The structure of English:
 - Introduction
 - Grammatical units:
 - The word
 - The phrase
 - The clause
 - The sentence
 - The grammatical structures:
 - The structure of the phrase
 - The structure of the clause
 - The structure of sentence (functions)
 - The structure of sentence (realizations)

1.2. Everyday functions.
1.3. Requests and offers.
1.4. Direct functions.
1.5. Asking about /expressing.
1.6. Asking about /stating.
1.7. Functions of English.
1.8. Using dictionary
1.9. Reading comprehension
1.10. Collection and definitions of trade related terminologies

Unit 2. Writing skills in English: [15]
2.1 Writing paragraphs
2.2 Writing dialogues
2.3 Writing Précis
2.4 Writing summaries
2.5 Writing letters:
 - Applications
 - Official letters
 - Business letters
 - Invitation letters
2.6 Writing essays
2.7 Writing reports:
 - General reports
 - Technical reports
 - Needs assessment reports
 - Review reports
2.8 Writing resumes
2.9 Writing bibliographies
2.10 Writing minutes
2.11 Writing notes
2.12 Writing proposals:
 - Technical proposals
 - Academic proposals
2.13 Writing for action
2.14 Writing for job
2.15 Writing technical articles:
2.16 Using technical journals/articles
2.17 Writing instructions
2.18 Introduction to writing technical manuals
2.19 Writing memos

Unit 3. English sounds and structures: [4]
3.1 Definitions of phonology, sounds of English, morphology, lexicology, syntax, and semantics
3.2 Sounds of English:
 - The vowels
 - The consonants
 - Consonant clusters
 - Vowel sequences
 - Syllable structure
 - Stress
 - Intonation
Unit 4. **English conversation practices and guidance:**

4.1. Situational conversation
4.2. Structural conversation
4.3. Familiarization with English spoken skills for employment during the stage of visa application to workstation in abroad.
4.4. Guidance for:
 - TOEFL preparation
 - IELTS preparation
 - Group discussion and presentation
 - Seminar conduction

Learning materials:

2. Shah, B.L., A text book of writing skills in English, First edition Hira Books Enterprises, Kathmandu,
7. References to be selected by the related lecturer(s) from among the texts available in the market that meet the content needs of this subject.
8. The related institute may develop its own textbook and approve from the related authority so as to have a prescribed textbook of this subject.
Engineering Mathematics I
EG 1103 SH

Total: 5 hour /week
Lecture: 4 hours/week
Tutorial: 1 hours/week
Practical: hours/week
Lab: hours/week

Year: I
Semester: I

Course description:

This subject consists of four units related to trigonometry; coordinate geometry; algebra; and calculus necessary to develop mathematical background helpful for the understanding and practicing the related engineering works.

Course objectives:

After the completion of this course, students will be able to explain the concepts of the followings and apply them in the field of related engineering area
- Trigonometric ratios and equations, inverse circular functions and properties of triangles
- Straight lines, angle between lines, circle and parabola
- The progressions, permutations and combinations, binomial theorem, exponential and logarithmic series as well as the quadratic and polygonal equations
- Sets, limit and continuity, derivatives, integration and integrals.

Course contents:

Unit 1. Trigonometry: [16]

1.1. Review of trigonometric ratios:
- Basic trigonometric formulae
- Identities and conditional identities.

1.2. Trigonometric equations:
- Periodicity of trigonometric functions
- General solutions of the following equations:
 - Sin x = k , cos x = k and Tan x = k and using trigonometric equations.

1.3. Inverse circular functions:
- Domain and their graphs
- Formulae involving inverse circular functions
- Simple identities and equations involving circular functions

1.4. Properties of triangles:
- The sin law
- The cosine law
- The projection law
- The half angle formulae
- The area of a triangle
- The encircles and ex-circles of a triangle
Unit 2. **Coordinate Geometry:**

2.1 Straight lines:
- The three standard forms of equations of a line.
- The linear equation: \(ax + by + c = 0 \).
- Any line through the intersection of two lines.
- Concurrency of lines.

2.2 Angle between two lines:
- Bisectors of angles between two lines
- Pair of lines
- Homogeneous equation of second degree
- General equation of second degree representing two lines
- Angle between a pair of lines
- Bisectors of the angles for a line pair
- Lines joining the origin to the points of intersection of a curve and a line

2.3 Circle:
- Standard equation
- General form
- Tangents and normal

2.4 Parabola:
- Standard equation
- Tangents and normal

Unit 3. **Algebra:**

3.1 Progressions:
- A.P., G.P. and H.P.

3.2 Permutations and combinations

3.3 The binomial theorem for any index

3.4 Series:
- Exponential & logarithmic

3.4 Equations:
- Quadratic & polynomial

Unit 4. **Calculus:**

4.1 Idea of set, set notations, set operations,

4.2 Venn diagram,

4.3 The set of real members and its subsets.

4.4 The absolute value of a real number.

4.5 Functions- algebraic and transcendental.

4.6 Graphs of simple functions.

4.7 Limit of community.

4.8 Derivatives from definition of simple functions like:
- \(x^n \), \((ax+b)^n \), \(\sin (ax+b) \), \(e^{ax} \), \(ax \), and \(\log x \).

4.9 Derivatives of sum, difference, product and quotient of functions, chain rule, parametric and implicit functions

4.10 Integration, Rules for finding integrals.

4.11 Standard integrals and their uses.
4.13. Definite integral as limit of sum.

Learning materials:
1. References to be selected by the related lecturer(s) from among the texts available in the market that meet the content needs of this subject.
2. The related institute may develop its own textbook and approve from the related authority so as to have a prescribed textbook of this subject.
Engineering Physics I
EG 1104 SH

Year: I
Semester: I

Total: 6 hours/week
Lecture: 3 hours/week
Tutorial: 1 hour/week
Practical: hours/week
Lab: 2 hours/week

Course description:

This subject consists of four units related to mechanics, heat and thermodynamics, optics, and magnetism necessary to develop background in physics that supports for the understanding and practicing the related engineering works.

Course objectives:

After the completion of this course, students will be able to explain the basic concepts related to the followings and apply them in the field of the related engineering area.

- Mechanics.
- Heat and thermodynamics.
- Optics.
- Magnetism.

Course contents:

Unit 1. Mechanics:

1.1 Basic units and measurements:
- Measurement of physical quantities
- Introductory ideas about dimensions of physical quantities.
- Scalar and Vector: definitions and examples, dot and cross product of two vectors.
- Composition and resolution of vectors.

1.2 Newton’s laws of motion:
- Newton’s laws of motion (First, second and third laws)
- Principle of conservation of linear momentum
- Solid friction: Dynamic and rolling friction, laws of solid friction and its verification.

1.3 Uniform circular motion:
- Angular displacement and velocity.
- Centripetal force and acceleration.
- Motion of bicycle rider and banked track.

1.4 Gravitation:
- Newton’s law of universal gravitation.
- Gravitational attraction of earth.
• Acceleration due to gravity.
• Variation of acceleration due to gravity with height, depth, and latitude.
• Motion of satellites:
 • Orbital velocity.
 • Geostationary satellites.
• Weightlessness.

1.5. Work, energy, and power:
• Definition and units of work, energy and power.
• Potential and kinetic energy.
• Conservation of energy.
• Conservative forces.
• Transformation of energy.
• Power efficiency.

1.6. Simple harmonic motion (SHM):
• Simple harmonic motion and its characteristics.
• Period, frequency, and amplitude of simple harmonic motion.
• Speed and acceleration in simple harmonic motion.
• Energy of simple harmonic motion.
• Simple pendulum.

1.7. Rotation of rigid bodies:
• Forces in equilibrium, torque, couple, C.G. and center of mass.
• Moment of inertia.
• Angular momentum and
• Its conservation.
• Work done by torque.

2.1 Heat Phenomena and Quantity of Heat:
• Concept of temperature and thermal equilibrium.
• Temperature of scales.
• Quantity of heat gain or heat loss.
• Specific heat capacity.
• Determination of heat capacity by the method of mixtures.
• Newton's law of cooling.

2.2 Change of Phase:
• States of matter.
• Fusion and vaporization.
• Evaporation and boiling.
• Specific latent heats of fusion and vaporization.
• Melting and boiling points.
• Saturated and unsaturated vapors.
• Variation of melting and boiling points with pressure.
• Triple point and critical point.
• Dew point and humidity.
2.3 Thermal Expansion:
- Coefficients of linear, superficial and cubical expansions of solid and relation between them.
- Cubical expansion of liquids.
- Real and apparent expansions.
- Variation of density due to expansion.
- Barometric height correction.

2.4 Heat Transfer:
- Thermal conduction conductivity and determination of the coefficient of thermal conductivity.
- Convection and convection coefficient.
- Radiation.
- Perfectly black body.
- Stefan-Boltzmann’s law of black body radiation.

2.5 Gas Laws:
- Boyle’s law,
- Charles law and ideal gas equation.
- Universal gas constant,
- Avogadro number and Boltzman constant.
- Volume and pressure coefficients of ideal gas.

2.6 Kinetic Theory of Gases:
- Pressure in an ideal gas from molecular point of view.
- RMS speed, mean energy of a molecule of an ideal gas.

2.7 Thermodynamics:
- First law of thermodynamics.
- Different thermodynamic process:
 - Adiabatic,
 - Isothermal and
 - Isobaric.
- Specific and molar heat capacities for different thermodynamic processes,
 \(\text{C}_p - \text{C}_v = R \).
- Second law of thermodynamics.
- Carnot engine, Otto cycle and their efficiencies.

Unit 3. Optics:
3.1 Light and Illumination:
- Nature of light, sources of light, rays.
- Luminous flux.
- Luminous intensity of a point source.

3.2 Reflection and Refraction by plane Surfaces:
- Review of reflection and refraction by plane surfaces.
- Speed of light in different media.
- Deviation due to reflection and refraction.
- Phenomenon of total internal reflection, critical angle.
- Real and apparent depth.
• Determination of reflective index.

3.3 Reflection by Spherical Surfaces:
• Review of reflection by spherical surfaces.
• Method of construction pf image by ray diagrams.
• Real and virtual images.
• Nature of images formed by spherical mirrors.
• Spherical aberration: parabolic mirror.
• Uses of Mirrors: driving mirror of a car, field of view.

3.4 Refraction through Prisms and Lenses:
• Deviation due to prism and minimum deviation.
• Refraction through lenses.
• Lens maker equation.
• Converging lens, diverging lens and thin lens equation.
• Formation of images by lenses.
• Combination of lenses.
• Magnification,
• Power of a lens.
• Uses of lenses:
 • simple microscope,
 • compound microscope and
 • Telescope
• Human eye.

Unit 4. **Magnetism:**

4.1 Magnets and Magnetic fields:
• Magnetic poles, magnetic moment, magnetic axis, and magnetic meridian.
• Magnetic field.
• Coulomb’s law for magnetism.
• Magnetic field due to magnetic poles and bar magnets.
• Intensity and flux density of magnetic field.
• Neutral point.
• Tangent law.
• Deflection and oscillation magnetometer.

4.2. Earth’s Magnetism:
• Horizontal and vertical components of earth’s magnetic field.
• Declination and angle of dip.

4.3. Magnetic properties of materials;
• Molecular and modern theory of magnetism.
• Para magnetism and diamagnetism:
 • Permeability and
 • Susceptibility.
• Intensity of magnetization.
• Domain theory of ferromagnetism.
• Hysteresis
Engineering Physics Practical I

1. Determine volume of hallow cylinder by using vernier calipers.
2. Determine density of a steel / glass ball by using screw gauge.
3. Determine thickness of glass plate using spherometer and calculate the area by using millimeter graph paper.
4. Determine the acceleration due to gravity by using simple pendulum.
5. Determine the magnetic movement of a bar magnet by using deflection magnetometer.
6. Determine the refractive index of the material of prism.
7. Determine specific heat capacity of solid by the method of mixtures.
8. Determine specific latent heat of ice by the method of mixtures.
9. Determine specific gravity of different solids by up thrust method.
10. Determine focal length of a converging lens by displacement method.

Learning materials:

1. References to be selected by the related lecturer(s) from among the texts available in the market that meet the content needs of this subject.
2. The related institute may develop its own textbook and approve from the related authority so as to have a prescribed textbook of this subject.
Engineering Chemistry I
EG 1105 SH

Year: I
Semester: I
Total: 6 hour/week
Lecture: 3 hours/week
Tutorial: 1 hour/week
Practical: 2 hours/week
Lab: 2 hours/week

Course description:

This subject consists of three units related to general chemistry, language of chemistry, and system of classification necessary to develop background in chemistry that supports for the understanding and practicing related engineering works.

Course objectives:

After the completion of this subject, students will be able to explain the basic concepts related to the followings and apply them in the field of related engineering works:

- General chemistry
- Language of chemistry
- System of classification

Course contents:

Unit: 1 General chemistry: [8]

1.1 Atom and molecule:
- Definition
- Dalton's atomic theory and modern position of the theory

1.2 Atomic weight:
- Definition
- Determination of atomic weight by Dulong and Petit's method and Related numerical problems

1.3 Molecular Weight:
- Definition
- Avogadro's hypothesis
- Application of Avogadro's hypotheses (Mol. Wt=2×V.D., in the deduction of atomicity of elementary gases H₂, Cl₂, O₂, and N₂)
- Molecular weight determination by Victor Meyer's method and Related numerical problems

1.4 Equivalent weight:
- Definition
- Equivalent weight of element, acid, base and salt
- Equivalent weight determination by hydrogen displacement method and oxide method.
- Numerical relation between equivalent weight, atomic weight and valency
• Some related problems of equivalent wt. (From Hydrogen displacement method and oxide method)

1.5 Simple mole concept:
• Mole of an atom
• Mole of a molecule
• Molar volume and
• Simple calculation on mole concept

Unit: 2: Language of chemistry: [4]
2.1 Symbol:
• Definition
• Significance (qualitative and quantitative)
2.2 Formula:
• Definition
• Significance (qualitative and quantitative)
• Concept of valency in terms of combining capacity with \(H_2\), \(O_2\), and \(Cl_2\)
• Variable valency (ref. Fe, Sn, Pb, Cu, Hg, S and N)
• Radicals (electro- positive and electro - negative)
• Writing a formula
2.3 Chemical equation:
• Definition
• Types requisites
• Significance and limitation
• Balancing of chemical equation by hit and trial method and Partial equation method

Unit: 3: System of classification: [33]
3.1 Atomic structure:
• Subatomic particles (electron, proton and neutron)
• Classical \(\alpha\) - rays scattering experiment
• Rutherford's atomic model and its drawbacks
• Bohr's atomic model (postulates only)
• Composition of nucleus
• Mass number and atomic number
• Arrangement of electron (Bohr - Bury Scheme)
• Concept of shell and sub shell,
• Electronic Configuration and atomic structure of Some elements (Atomic no. 1 to 30)
• Hund's rule
• General idea of quantum number and Pauli's exclusion principle
3.2 Electronic theory valency:
• Assumptions
• Types
• Electrovalency eg. NaCl, MgO, CaS
• Covalency eg. \(H_2\), \(O_2\), \(N_2\), \(CH_4\), \(H_2O\), \(NH_3\), \(C_2H_2\)
• Coordinate co-valency eg. \(\text{H}_2\text{O}_2, \text{SO}_2, \text{O}_3, \text{SO}_3 \)
• Electronic dot structure of some compounds eg. \(\text{H}_2\text{SO}_4, \text{CaCO}_3, \text{K}_2\text{SO}_3 \)

3.3 Oxidation and reduction:
• Classical definition
• Electronic interpretation
• Oxidizing agent: Definition and eg \(\text{O}_2, \text{O}_3, \) oxyacids, halogens, \(\text{K}_2\text{Cr}_2\text{O}_7, \text{KMnO}_4 \)
• Reducing agent: Definition and eg. \(\text{H}_2, \text{H}_2\text{S} \) with some examples,
• auto-oxidation eg.\(\text{H}_2\text{O}_2, \text{HNO}_2, \text{SO}_2 \)
• Idea of oxidation number
• Balancing chemical equation by oxidation number method

3.4 Periodic table:
• Mendeleef's periodic law
• Mendeleef's periodic table
• Characteristics of groups and periods in the table
• Advantages and anomalies of the periodic table
• Modern periodic law

3.5 Electrolysis:
• Definition of electrolyte, non-electrolyte and electrolysis
• Faraday laws of electrolysis,
• Application of electrolysis (electroplating and electro refining)
• Electrolysis of acidulated water

3.6 Activity and electrochemical series:
• Definition,
• Action of water, acid and oxygen on metals.

3.7 Corrosion:
• Definition
• Types
• Direct and indirect method and prevention against corrosion

3.8 Acid, Base and Salt:
• Arrhenius concept of acid and base
• Lowry and Bronsted concept of acid and base
• Conjugate acid and base
• Amphoteric nature of water
• Lewis concept of acid and base
• Preparation of acid and base (at least 2 -methods).
• Properties of acid and base.
• Definition of Salt
• Types of salt (normal, acidic and basic)
• Preparation of salt (at least 3 - methods)
• Concept of hydrogen ion concentration, pH value and pH Scale
• Buffer solution.
3.9 Volumetric analysis:
• Definition of titration (acidimetry and alkalimetry),
• Indicator
• End-point (neutralization point)
• Standard solution (primary and secondary standard solution), Normal, Decinormal, Molar, Molal solution
• Requisites of primary standard substance
• Volumetric equation,
• Express the strength of solution Normality, Molarity, Molality, gram per litre and percentage and related numerical problems

Engineering Chemistry Practical I [30]
 a. to cut the glass tube into three equal parts and round up their shape edges
 b. to bore a hole through a cork
 c. to bend the glass tubing into acute, obtuse and right angle
 d. to draw a jet and capillary tube
 e. to fit up a wash bottle

2. To separate sand and copper sulphate crystals in pure and dry state from the mixture of sand and copper sulphate [2]
3. To separate sand and calcium carbonate in pure and dry state from the mixture of sand and calcium carbonate [2]
4. To prepare pure water from supplied impure water by distillation and o test the purity of the sample prepared [2]
5. To neutralize dilute sulphuric acid with sodium carbonate solution, and to recover crystals of sodium sulphate [2]
6. To obtain pure and dry precipitate of barium sulphate by treating excess of dilute sulphuric acid with barium chloride solution [2]
7. To investigate the composition of water by electrolysis by using Hofmann's apparatus [2]
8. To determine the equivalent weight of reactive metal by hydrogen displacement method. [2]
9. To determine the pH of different unknown solution and using pH paper and universal indicator [2]
10. To prepare primary standard solution of sodium carbonate and to use it to standardize an approximate decinormal acid solution [2]
11. To standardize given unknown acid (Approx N/10) solution by preparing standard alkali solution. (Expression of strength in different ways) [2]
12. To standardize given unknown alkali (approximately N/10) solution with the help of by preparing standard acid solution. (Expression of strength in different ways) [2]
13. To carry out conductivity experiments on solids and liquids (CuSO4, Zn, Mg, Al, Fe, CCl4, C6H6, C3H8OH) [2]
Text books:
1. A Text book of Chemistry, Jha and Guglani

Reference books:
1. Fundamentals of Chemistry, K.R. Palak
2. Inorganic Chemistry, Bahl and Tuli
5. Elementary practical chemistry, M.K Sthapit

Other learning materials:
1. Other references to be selected by the related lecturer(s) from among the texts available in the market that meet the content needs of this subject

Note: The related institute may develop its own textbook and approve from the related authority so as to have a prescribed textbook of this subject.
Engineering Drawing I
EG 1106 ME

Year: I
Semester: I

Course description:

This course deals with geometrical construction, orthographic projections and basic techniques of freehand sketch.

Course objectives:

After completing this course the students will be able to:

- Represent different shapes accurately by applying geometrical constructions,
- Project point, line, plane and geometrical solids,
- Represent three dimensional objects in orthographic from and dimension them,
- Use freehand techniques to sketch different shapes.

Course content:

Unit 1: Introduction [4]

1.1 Engineering drawing as graphic language
1.2 Drawing instruments
1.3 Scale: Reduced scale, enlarged scale, full size scale
1.4 Conventional line types
1.5 Sheet size and sheet layout
1.6 Exercise on drawing horizontal, vertical and inclined lines and conventional line types [Sheet 1]

Unit 2: Technical Lettering [4]

2.1 General procedure for freehand technical lettering: letter stroke, letter proportion, use of pencil and pens, uniformity of letters
2.2 Single stroke vertical capital letters, Single stroke inclined capital letters, Single stroke vertical lowercase letters, Single stroke inclined lowercase letters, vertical and inclined numerals, vertical and inclined fractions
2.3 Lettering using templates
2.4 Exercise on freehand technical lettering and lettering using templates [Sheet 2]

Unit 3: Geometrical Construction [12]

3.1 Construction on straight lines and angles
 Bissection and trisection of a straight line, Bissection and trisection of an angle, To draw perpendicular lines, To draw parallel lines, To divide a straight line into any number of equal parts, To divide a straight line proportionately, To draw an angle equal to given angle
3.2 Construction of polygons
 To draw triangles, To inscribe a circle of a triangle and circumscribe a circle about a given circle, To draw squares, To draw a regular polygon, To draw a regular hexagon, To draw a regular octagon, To draw a regular polygon (general method)

3.3 Exercise on construction on straight lines and angles and construction of polygons [Sheet 3]

3.4 Construction on circular arcs and circles
 To determine center of a given arc, To draw a circle passing through three given points, To draw an arc tangent to given two straight lines, To draw an arc tangent to given straight line and a given circle or circular arc, To draw an arc tangent to given two circles or circular arcs, To draw open belt and cross belt tangents, To draw an ogee curve between two parallel lines

3.5 Exercise on construction on circular arcs and circles [Sheet 4]

3.6 Construction of standard curves
 Construction of parabola, ellipse, hyperbola, cycloid, helix, spiral, involute

3.7 Exercise on construction of standard curves [Sheet 5]

Unit 4: Dimensioning [4]

4.1 Dimensioning terms and notations
4.2 Techniques of dimensioning: Size and location dimensioning
4.3 Placement of dimensions: Aligned and Unidirectional system
4.4 Rules for dimensioning and conventions
4.5 Exercise on dimensioning of two dimensional figures including straight line, angles, circles, circular arcs [Sheet 6]

Unit 5: Projection of Points, Lines and Planes [8]

5.1 Principle of projection
5.2 Principle planes of projections, four quadrants
5.3 Projection of point
 Projection of point on two planes of projection, Projection of point on three planes of projection
5.4 Projection of line
 Projection of line perpendicular to VP, Projection of line perpendicular to HP, Projection of line parallel to both VP and HP, Projection of line parallel to VP and inclined to HP, Projection of line parallel to HP and inclined to VP, Projection of line inclined to both VP and HP
5.5 Exercise on projection of point and line [Sheet 7]
5.6 Projection of plane
 Projection of plane parallel to VP, Projection of plane parallel to HP, Projection of plane perpendicular to both VP and HP, Projection of plane perpendicular to VP and inclined to HP, Projection of plane perpendicular to HP and inclined to VP
5.7 True Length of an Oblique Line
5.8 True shape of an Oblique Plane
5.9 Exercise on projection of plane; true length of an oblique line; true shape of an oblique plane [Sheet 8]

6.1 Types of Solids: Polyhedra and Solids of revolution
6.2 Projection of geometrical solids: Prism, Cylinder, Pyramid and Cone
6.3 Projection of points on the surfaces solids
6.4 Exercise on projection of cylinder, prism, cone and pyramid; Projection of points on the surfaces of these solids [Sheet 9]
Unit 7: Orthographic Projection

7.1 Principle of Orthographic Projection
7.2 Systems of Orthographic Projection: First Angle and Third Angle
7.3 Making an Orthographic Drawing
7.4 Analysis in Three Views
7.5 Exercise on orthographic projection of rectangular objects with horizontal and vertical plane surfaces [Sheet 10]
 Exercise on orthographic projection of rectangular objects with inclined plane surfaces [Sheet 11]
 Exercise on orthographic projection of objects with cylindrical surfaces [Sheet 12 &13]
 Exercise on orthographic projection and dimensioning [Sheet 14]

Unit 8: Freehand Sketching

8.1 Techniques of Sketching: Pencil hardness, paper with grid or lines
8.2 Techniques for horizontal and vertical lines; arcs and circles
8.3 Exercise on freehand sketches of different shapes with lines, arcs, and circles [Sheet 15]

Reference:
Workshop Technology I
(Metal & Wood Work)
EG 1107 ME

Year: I
Semester: I

Total: 12 hours/week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: 9 hours/week
Lab: hours/week

Course description:
This subject deals with the identify basic hand tool, measuring instrument, power tools, uses, care and safety in the mechanical, wood work engineering area.

Course objectives:
After the completing this course the students will be able to:
• Apply the safety rules in the workshop.
• Identify the tools measuring instrument, power tools.
• Hold the hand tools and operating power tools for the marking, measuring and cutting the metal in shape.
• Joining the metal by different processes by hand.
• Maintenance and care the measuring instrument, hand tools and power tools.

Course contents:
Unit 1: Safety in the workshop

1.1 Workshop rules.
 • Cause of accident and prevention.
 • Safety environment.
 • Used the protective cloths, and equipment.
 • Arrange the workshop, hand tools.

Unit 2: Laying Tools

2.1 Layout tools
 • Identify the scriber, punch, divider, surface plate, v-block and vernier height gauge.
 • Select the tools for the line and point on the surface.
 • Handle the layout tools, care and maintenance.

2.2 Hammer hammering
 • Identify the ball, cross, straight, claws and soft hammers.
 • Select the hammers for the driving, chipping, punching, puling nails, riveting and fitting.
 • Holding handles and replace handle. Be care when the stroking by hammer.
2.3 Wrenches
- Identify the single, double, pipe and the adjustable wrenches.
- Wrench holding and processes of tightening and opening the elements and parts.

2.4 Work holding device
- Identify the bench, machine, pipe and chain vices.
- Select the device and uses.
- After uses clean and maintenance the vices, protect voice jaws and work pieces.

Unit 3: Cutting tools

3.1 Chisels
- Identify the cross, diamond and round chisels.
- Select the angle of the chisels and removing metal from the surface.
- Holding the hammer and chisel and chipping processes.
- Uses the chipping guard, care and maintenance the work place and tools.

3.2 Handsaw and sawing
- Select the hand saw, blade, cutting metal.
- Method of the holding the work piece and rules of sawing.

3.3 Files and filing
- Identify the parts, shapes, sizes, cuts of the files.
- Select the file for the shaping different types of the metal and surface finish accuracy +0.2mm.
- Method of the holding, balancing and the direction of the filing.
- Clean and store the files.

3.4 Reamer and reaming
- Types of the reamers, hand, taper and adjustable reamers.
- Select the holding device, reamer, drill speed.
- The method of the reaming on the metal.
- Clean and store the reamers.

3.5 Thread and threading
- Name of the taps, dies, handle, kinds of the thread, size, angle, main part of the thread and uses.
- The method of the producing the thread by the taps and dies, lathe machine, rolling, pressing.
- Clean and store the tools.

3.6 Scraper and scraping
- Identify the flat, three side and curve scraper.
- The method of the scraping and the qualities of the surface.

Unit 4: Measuring instrument

4.1 Identify the vernier caliper, micrometer, try square, bevel protractor, wire, and filler radius and thread gauge.

4.2 The main parts of the measuring instrument, accurately reading the scale of the measuring instrument.
4.3 The rules of the measuring and using the measuring instrument.
4.4 Care and store the measuring instrument.

Unit 5: Rivet and riveting
5.1 Identify the rivets, size, head, metal, riveting sets punches.
 - Calculate the length, diameter of rivet and head.
 - The procedure of the riveting and the joints mistakes.

Unit 6: Solder and soldering
6.1 Name of the soldering iron, types of solder, cleaning tools and the fluxes.
 - Select the source of heat and temperature.
 - The process of cleaning and the joining work metal.
 - Care and the prevent accidents. Safely uses of the equipments.

Unit 7: Shear and shearing
7.1 Identify the hands, press, torch, snip, shear tools.
 - Select the method of the shearing sheet, rod, and square, flat angle metal.
 - Observe the safety rules and care of the tools.

Unit 8: Bend and bending
8.1 Name of the bending devices, vice pliers, range, hand bar and fork.
 - Select the folding, radius bending and rolling.
 - The method of bending the metal bar, flat and the plate.
 - Bending the metal into many shapes and the maintenance of the tolls and equipments.

Unit 9: Power tools
9.1 Drill machines
 - Identify the hand drill machine, bench, gang, colon and radial drill machine.
 - Select the correct types of the machine.
 - The correct method of using the drilling machine.
 - Select the correct speed and the fit for different size of the drill and the metal.

9.2 Drill and drilling
 - Identify the different kinds of drill size, purpose and angle.
 - Select the work and the drill, holding tools, equipments.
 - Operates all the types of drill machine of the drill holes of acceptable standards.
 - Name the operation of the drill machines and the function by coolant.
 - Operate the machine safely and use safety equipments.

Unit 10: The sheet metal work
10.1 Hand tool metal
 - Identify the types of the sheet metal, mild steel, galvanized steel. Copper, brass, aluminum familiar with sizes and thickness of the sheet metals.
 - Measure the sheet with the gauge and instruments.

10.2 Marking tools
 - Identify and uses of sheet metal, marking tools, scriber, rules, try square, punch, divider, trammel and depth gauge.
- Select the marking and sheet metal tools and uses such as the hand snipes, stacks, punch plat, hatchet, blow horn, hand punch, pop riveters fork devices, hammers, fly cutter, groove, seaming tools.

10.3 Power tools
- Identify the bending, rollers, folders, and edge forming, sawing, crimping, spot welding and polishing parts.
- Understand, select, adjust, controls and to operate the power tools. Cut the sheet for final shape or the forming.

10.4 Development sheet
- Select the lines and develop for apply in the workshop.
- Mark cut and the produce patterns, templates for sheet boxes, book stand, scoop, tool box, funnel pipe and machine guards.

10.5 Sheet metal joining
- Familiar with the proportions of the sheet metal joints, relative the tools.
- Uses the hand tools for the single and double edge lap joints.

10.6 Safety
- Know and to take precaution against from the unsafe condition in the sheet metal workshop.
- Wear the safety dresses and equipments in the workshop.
- Safely maintenance the workshop floor, hand tools, hand power tools.

Unit 11: Wood work and working [10]

11.1 Hand tools
- Identify the marking, divider, saw, wood chisel, hammer, wild stone, planner, boring, drilling, driving, cramping and the holding tools.

11.2 Power tools
- Name the drill place, sander, jig saw, planner, circular saw, surface facer, thickness, hand saw and routers.
- Select and uses, operate controls; adjust all hand tools and the machine.

11.3 Measuring tools
- Identify the measuring tools and is familiar with the range of rules, tabs and non precision measuring tools.
- Reads the graduation of metric scale, transfers directly by the caliber scale to the work pieces, use the caliber to measure inside and outside dimension of the work pieces.
- Clean, clear and stores after uses.

11.4 Timber
- Setting, marking and cutting of timbers. Using saw and cutting tools.
- Wood work joints, halving, notching, cogging, bridle, mortice, tenon and dove tails.
- Types of the joint, lengthening, bearing, widening and angle.
- Select the timber, plywood and fitting accessories and fastening materials.
- Construction carpentry: Assemble the door frames, leveling, and bracing for fixing to the brick work. Correct sizes for hanging, closing and securing to produce bracket, shelve, table and tool box.
- Handle the tools safely and efficiently. The replace guards rules of the general safety in the wood workshop.

Reference books:

1. Workshop Technology (Vol. 1) By S. K. Hajra Chaudhary
2. Shop Theory (Vol. 1) By Henp Fort Trade School

Practical

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Task practical</th>
<th>Time:</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marking : straight, curve, dot</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Measuring: rules, vernier caliper, gauge</td>
<td>10 hrs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hammering by ball, cross, soft straight pin</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sawing by hand saw power</td>
<td>3 hrs</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Filling with single, double and rasp cut</td>
<td>15 hrs</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chiseling by the flat, cross, concave, power chisel</td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reamerer: Hand and adjustable</td>
<td>3 hrs</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Threading: Tap and dies</td>
<td>3 hrs</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Scrapping: Flat and curve on the metal surface</td>
<td>3 hrs</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Rivetting: Riveting sets pup riveter</td>
<td>3 hrs</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Soft soldering: Solder, heat joint metal</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Shearing: Snip, press folds</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Bending by plier, range, hand, bar, fork and power tools</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Holding: Bend, machine pipe and the devices</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Power tools operating: Drill, folding, rolling, radius bending, spot welding,</td>
<td>10 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>grinding, beading, cribing, edge forming, hacksaw machines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Drilling: Counter sink, counter boring, reaming, thread cutting</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Sheet metal working: Hands pipe bend plot, blow horn, groove and seaming</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Developing: Patterns, templates, for the sheet boxes, book stand, scoop funnel,</td>
<td>5 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pipe and the machine guards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Wood working: Marking, measuring, sawing, chiseling, boring, planning, drilling</td>
<td>10 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cramping, holding, size facing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Joining: Halving, notching, cogging, bridle, tenon dovetails joints, wide and</td>
<td>10 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>angle joining</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing: Door frame, bracing, fixing, hanger, closing, securing, fitting,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fastening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Maintenance: Cleaning and storing, working place</td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>6 hrs</td>
<td></td>
</tr>
<tr>
<td>S. No</td>
<td>Project</td>
<td>Skill</td>
<td>Metal</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Hammer</td>
<td>Measuring, marking, sawing, filing, drilling, thread cut</td>
<td>Tool steel 1 pc</td>
</tr>
<tr>
<td>2</td>
<td>Papper height</td>
<td>Measuring, marking, sawing, filing</td>
<td>M. S. rod 1 pc</td>
</tr>
<tr>
<td>3</td>
<td>G. Clamp</td>
<td>Measuring, marking, dot, punching, drilling, chiseling, sawing, filing</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bottle opener</td>
<td>Measuring, marking, sawing, radius filing, drilling</td>
<td>M.S. flat 1 pc</td>
</tr>
<tr>
<td>5</td>
<td>Dove tail</td>
<td>Measuring, marking, drilling, sawing, fitting, male and female, Scrapping</td>
<td>M.S. flat 2 pc</td>
</tr>
<tr>
<td>6</td>
<td>Hammer handle</td>
<td>Measuring, marking, filing, thread cutting</td>
<td>M.S. rod</td>
</tr>
<tr>
<td>7</td>
<td>Corn seller</td>
<td>Measuring, marking, Sawing, bending, riveting, soldering</td>
<td>Pipe Ø 65x70 G. I. wire Ø 3x100</td>
</tr>
<tr>
<td>8</td>
<td>Hack saw frame</td>
<td>Measuring, marking, cutting, bending</td>
<td>M.S. flat</td>
</tr>
<tr>
<td>9</td>
<td>Hanger</td>
<td>Measuring, marking, bending, joining</td>
<td>G. I. wire</td>
</tr>
<tr>
<td>10</td>
<td>Candle light</td>
<td>Measuring, marking, cutting, filing, bending, drilling, thread cutting</td>
<td>M.S. flat 10x100x15 M.S. sheet 0 3x25x300</td>
</tr>
<tr>
<td>11</td>
<td>Try square</td>
<td>Measuring, marking, cutting, filing, riveting, drilling</td>
<td>M.S. flat 10x20x80 M.S. sheet 2x15x120</td>
</tr>
<tr>
<td>12</td>
<td>Hand vice</td>
<td>Measuring, marking, cutting, filing, drilling, counter sink, reaming, thread cutting</td>
<td>M.S., M.S. rod 16x16x200 Ø 12x70 Ø 8x80</td>
</tr>
<tr>
<td>13</td>
<td>G. I. box</td>
<td>Measuring, marking, cutting, hem, seaming, folding, riveting, soldering</td>
<td>G. I. sheet 22 gauge 200x200</td>
</tr>
<tr>
<td>14</td>
<td>Funnel</td>
<td>Measuring, marking, rolling, seaming, soldering</td>
<td>G. I. sheet 22 gauge 100x300</td>
</tr>
<tr>
<td>15</td>
<td>Store box</td>
<td>Measuring, marking, heming, seaming, cutting, folding, riveting</td>
<td>G. I. sheet 22 gauge 400x500</td>
</tr>
<tr>
<td>16</td>
<td>Hand tool box</td>
<td>Measuring, marking, heming, seaming, cutting, folding, riveting</td>
<td>Block sheet 1.5 600x1000</td>
</tr>
<tr>
<td>17</td>
<td>Practical test</td>
<td>Enval the all the bench work Sharping the hand tool and power tool</td>
<td>As per need As per need</td>
</tr>
</tbody>
</table>
Element of Electrical Engineering
EG 1108 EE

Total: 3 hours/week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hours/week

Year: I
Semester: I

Course description:
This course deals with the fundamental of electrical quantities, electro-magnetic field and d. c. & a.c. circuit analysis. It also describe the about electrical machines, supply & installation, measurement, maintenance and safety.

Course objectives:
After completing this course the students will be able to:

- identify the fundamental principles of electrical engineering
- apply the basic electro-technology in the mechanical engineering
- identify & verify the role of electrical energy on production process.

Course contents:

Unit 1. Introduction [1]
1.1 Brief history of the generation of electricity in Nepal
1.2 Energy sources and production
1.3 Application of electrical energy in the field of mechanical engineering.

Unit 2. Fundamentals of electricity [2]
2.1 Concept of atomic structure and electric charge
2.2 Concept of electric voltage and current
2.3 Concept of resistor, inductor and capacitor

Unit 3. Electric Laws and d. c. circuit [6]
3.1 Electric circuit.
3.2 Ohm's law
3.3 Kerchiefs laws.
3.4 Network analysis
3.5 Electrical work, energy and power

Unit 4. Electric and magnetic field [6]
4.1 Fundamental concept of electric field
4.2 Laws of electric field and electrostatic induction
4.3 Fundamental concept of magnetic field
4.4 Electro-magnetism and electro-magnetic induction.
4.5 Magnetic material, magnetic circuit and application
Unit 5. **Chemical effect of electricity** [2]

5.1 Basic concept
5.2 Faradays laws of electrolysis
5.3 Electro chemical voltage generation

Unit 6. **Single & three phase a. c. circuit analysis** [8]

6.1 Generation of an alternating voltage
6.2 A. C. quantities
6.3 Loads in a. c. circuit
6.4 Power in a. c. circuit
6.5 Three phase a. c. circuit

Unit 7. **Electrical Machine** [8]

7.1 Transformer: types, construction, working principle, loaded and no-load operation of transformer
7.2 D.C. machine: types, construction, working principle of motor and generator, methods of excitation, armature reaction, back emf in dc motor
7.3 A. C. machine: types, construction, working principle of motor and generator.
7.4 Selection of electric motor.

Unit 8. **Electrical measurement, supply and installation** [6]

8.1 General concept of supply and distribution of electric system.
8.2 Basic concept of electrical installation, control and protection
8.3 Electrical measuring units, instruments and measurement method.

Unit 9. **Electrical maintenance and safety** [4]

9.1 Concept of preventive maintenance and routine check
9.2 Basic maintenance of electric system
9.3 Concept of safety rules and regulation
9.4 First aid steps to be taken in electrical accident

Unit 10. **Basic industrial electronics** [5]

10.1 Introduction to semiconductor material, diodes, transistors, thyristors, electronic valves and 1C chips and their simple working principle, construction and application.
10.2 Simple electronics circuits of transistor, rectifying, amplifying, control etc.
Practical

1. Determine the characteristics of voltage vs resistance on a) Tungsten Filament b) Carbon resistor
3. Measure power, power factor, vars and phaser diagram in RL and RC circuit.
4. Study RLC resonance circuit
5. Measure of power and power factor in balanced three-phase circuit using two single-phase watt meters.
6. Determine the following parameters for single phase transformer:
 a) Polarity of primary and secondary windings
 b) Voltage ratio transformer
7. Perform open circuit and short circuit test on a single-phase transformer and calculate its equivalent circuit parameters, efficiency and voltage regulation.
8. Determine magnetizing characteristics of a separately excited d.c. generator for different speed and plot the complete hysteresis loops for one speed.
9. Perform speed control of a d.c. motor using:
 a) field current control b) armature voltage control
11. Familiarize diodes, rectifiers, bipolar transistor and operational amplifiers.

Textbooks/Reference books

3. B. L. Theraja, A. K. Theraja, "A textbook of Electrical Technology", S. Chand & Company Ltd., India
Second Semester

Subjects:

1. EG 1201 SH Engineering Mathematics II
2. EG 1202 SH Engineering Physics II
3. EG 1203 SH Engineering Chemistry II
4. EG 1204 ME Engineering Drawing II
5. EG 1205 EX Electronic Engineering I
6. EG 1206 ME Material Science
7. EG 1207 ME Engineering Mechanics
8. EG 1208 ME Workshop Technology II (Foundry & Welding)
Engineering Mathematics II
EG 1201 SH

Year: I
Semester: II

Total: 4 hours /week
Lecture: 3 hours/week
Tutorial: 1 hours/week
Practical: hours/week
Lab: hours/week

Course description:

This subject consists of five units related to vectors; algebra; calculus; geometry; and statistics necessary to develop mathematical background helpful for the understanding and practicing the related engineering works.

Course objectives:

After the completion of this course, students will be able to:

• Explain the concepts of vectors in plain and vectors in space and apply them in the field of the related engineering area
• Explain the concepts of the complex numbers, linear inequalities and programming apply them in the field of the related engineering area.
• Explain the concepts of determinants and matrices and apply them in the field of the related engineering area
• Explain the concepts of determinants and matrices and apply them in the field of the related engineering area
• Explain the concepts of applications of derivatives and areas of curves and apply them in the field of the related engineering:
• Explain the concepts of coordinates in space and planes and apply them in the field of the related engineering area
• Explain the concepts of statistics and apply them in the field of the related engineering area.

Course Contents:

Unit 1. Vectors: [5]

1.1. Vectors in plane, addition and subtraction.
1.2. Composition and decomposition of vectors.
1.3. Vectors in space.
1.4. The unit vectors i, j, k
1.5. Product of two vectors:
• dot product,
• cross product,
1.6. Simple applications.
Unit 2. Algebra:
2.1. Complex number in the from A+ ib.
2.2. Algebra of complex numbers.
2.3. Polar representation of complex numbers.
2.4. De Moivre’s theorem and its applications
2.5. Linear inequalities and their graphs.
2.6. System of linear inequalities in two variables,
2.7. System of linear inequalities in two variables,
2.8. Linear programming: Problems involving two variables under given linear constraints
2.9. Determinants and matrices,
2.10 Algebra of matrices,
2.11 Properties of determinants,
2.13. Solution of linear equations using cramers’ rule
2.14. Row equivalent matrices
2.15. Idea of polynomial equations

Unit 3. Calculus:
3.1. Applications of derivatives-
 • Tangents and normal to a curve taking slope as derivative
 • Maxima and minima of a function
 • Derivative as rate of change
3.2 Areas under curves:
 • Use of definite integral as limit of a sum to find areas under curves
 • Areas of closed curves and
 • Areas between curves.
3.3 Anti-derivatives:
 • Curve tracing, maxima and minima
 • Riemann sums & integral
 • Application of fundamental theorem

Unit 4. Geometry:
4.1. Coordinates in space
4.2. Coordinates in planes.

Unit 5. Statistics:
5.1. Statistics:
 • Introduction to statistics
 • Measures of Central Tendency
 • Measures of Dispersion
 • Moments, Skewness and Kurtosis
 • Correlation and Regression
5.2. Probability:
- Concept of Probability
- Concept of conditioned probability
- Concept of independent and dependent events
- Concept of mutually exclusive events
- Concept of theoretical probability distribution

5.3 Concept of normal curve and normal distribution

5.4 Concept of sampling, estimation and tests of significance

Learning materials:
2. Elementary Statistics – H. C. Saxena
3. Statistical Methods – Mrigendralal Singh
4. References to be selected by the related lecturer(s) from among the texts available in the market that meet the content needs of this subject.
5. The related institute may develop its own textbook and approve from the related authority so as to have a prescribed textbook of this subject
Engineering Physics II
EG 1202 SH

Year: I
Semester: II

Total: 6 hours /week
Lecture: 3 hours/week
Tutorial: 1 hours/week
Practical: hours/week
Lab: 2 hours/week

Course description:
This subject consists of four units related to electricity, waves, properties of matter, and modern physics necessary to develop background in physics that supports for the understanding and practicing the related engineering works.

Course objectives:
After the completion of this course, students will be able to:

- Explain the basic concepts related to the electricity and apply it in the field of the related engineering area
- Explain the basic concepts related to the waves and apply it in the field of the related engineering area
- Explain the basic concepts related to the properties of matter and apply it in the field of the related engineering area
- Explain the basic concepts related to the modern physics and apply it in the field of the related engineering area.

Content contents:

Unit 1. Electricity: [16]
1.1. Electrostatics:
- Elementary charge, charging and induction.
- Faraday’s ice-pail experiment.
- Idea of electric field
- Lines of forces.
- Coulomb’s law.
- Intensity of electric field.
- Electrostatic potential, equipotential.
- Surfaces.
- Potential and field strength.
- Potential gradient.
- Action of point.
- Van de Graaf generator.
- Capacitors.
- Different types of arrangement of capacitors.
- Energy storage.
1.2. Current electricity:
- Basics:
 - D.C. Current.
 - Strength of Current.
- Potential difference across a conductor.
- Ohm's law and its verification.
- Resistance and resistivity.
- Mechanical measurements:
 - Galvanometer.
 - Ammeter and voltmeter
 - Potentiometer and measurement of emf.
- Whitestone bridge
- Kirchhoff’s law and their use to analyze simple circuits.
- Heating effect of current:
 - Joules law
 - The rate of heating from the concept of p. d.
- Thermoelectricity:
 - Seebeck effect
 - Peltier effect and
 - Thomson effect.
- Chemical effect of current:
 - Faraday’s law of electrolysis.
 - Accumulator.

1.3. Magnetic effect of current and electromagnetism:
- Magnetic forces and magnetic field of current:
- Force experienced by charge moving in magnetic field.
- Maxwell’s crockscREW rule.
- Force applied by magnetic field on current carrying conductor.
- Torque on current carrying coil in magnetic field.
- Theory of moving coil galvanometer.
- Biot-Savart’s Law
 - Field due to a long straight conductor and due to circular coil.
 - Force between two parallel conductors carrying current.
- Ampere’s law
 - Magnetic field due to the solenoid or toroid and long straight conductor.
- Electromagnetic induction:
- Faraday’s law of electromagnetic induction and Lenz’s law.
- Phenomenon of self-induction.
- A. C. generator.
- D.C. generator.
- Transformer.

1.4 Alternating current:
- Instantaneous and effective values of current and voltage.
Phase between current and voltage across different elements of circuit.
- Capacitive and inductive reactance.
- Impedance.
- Resonance.
- Power in a. c. circuit

Unit 2. Waves:

2.1. Wave motion:
- Wave motion.
- Types of wave motion
- Characteristics of wave motion
- Wavelength, frequency and speed of waves
- Speed of waves in different media.
- Velocity of sound in air.

2.2. Wave phenomena:
- Sound waves.
- Reflection of sound waves.
- Interference of sound waves.
- Diffraction of sound waves.
- Beats and their formation.
- Progressive waves.
- Stationary waves.
- Waves in strings and pipes: fundamental vibrations and overtones.
- Intensity of sound.
- Intensity level.
- Inverse square law.

2.3. Physical optics:
- Interference of light waves and coherent sources.
- Phase difference and path difference. Young's double slit experiment.
- Distraction of light waves.
- Huygen's principle.
- Polarization and unpolarized lights, polarization by reflection (Brewster's law)

Unit 3. Properties of matter:

3.1 Elasticity:
- Elasticity, Hook's law, Young's modules, Bulk modulus.
- Elasticity of shear.

3.2 Surface tension:
- Intermolecular attraction in liquid, surface tension.
- Cohesion and adhesion, angle of contract.
- Coefficient of surface tension and surface energy (Only introduction).
3.3 Viscosity:
- Stream line and turbulent flows.
- Idea of liquid layer, Velocity gradient, Viscosity and its coefficient.
- Comparison of viscosity with solid friction, Viscous forces, Stoke's law, Terminal velocity, determination of coefficient viscosity, Viscous forces at higher relative velocities (qualitative).
- Temperature dependence of the coefficient of viscosity of liquid and gases.

Unit 4. Modern physics: [10]

4.1 Atomic physics:
- Photons, Photoelectric effect, Einstein’s photoelectric equation and stopping potential for photoelectrons.
- Motion of charged particles in simultaneously applied electric and magnetic fields, e/m for electron, Milliken’s oil drop experiment. Bohr model for hydrogen atom. Energy level diagrams and spectral series.
- X-rays: Production, nature and uses.
- Laser (introduction only)

4.2 Semiconductors:
- Energy states of valent electrons in solids, energy bands.
- Semiconductors, intrinsic and doped, p-type and n-type semiconductors.
- Majority and minority carries.
- Acceptors and donors, p-n junction, diode and depletion layer, forward and reverse bias.
- Rectifying property of diode, Transistor, transistor action and uses of npn transistor

4.3 Nuclear physics:
- Laws of radioactive disintegration: half life, mean life, and decay constant.
- Stable and radioactive nuclei.
- Binding energy.
- Fission and fusion.

Engineering Physics Practical II: [30]

1. Determine specific resistance of a wire.
2. Determine the frequency of A. C. mains.
3. Study current voltage characteristics of a junction diode.
4. Determine speed of sound by resonance air column method.
5. Determine Young Modulus.
6. Verify Ohm’s law.
7. Determine force constant of a helical spring oscillation method.
8. Compare Emfs of two cells by using potentiometer.
9. Study characteristic curves of npn transistor.
Learning materials:

Text books (For Both Parts I and II):
1. Advanced level physics by Nelkon and Parker latest editions
2. A textbook of physics, part I and part II by Gupta and Pradhan

Supplementary text:
1. College Physics by sears, Zemansky and Young, new Edition

Text book for laboratory work:
1. Physics Practical Guide by U.P. Shrestha, RPB

Text book for numerical problems:
1. Numerical exercise in physics volume I and volume II -
 Prepared by Physics Dept., Pulchowk Campus, and published by Institute of Engineering.

Other learning materials:
1. References to be selected by the related lecturer(s) from among the texts available in the market that meet the content needs of this subject
2. The related institute may develop its own textbook and approve from the related authority so as to have a prescribed textbook of this subject.
Engineering Chemistry II
EG 1203 SH

Year: I
Semester: II

Total: 6 hours/week
Lecture: 3 hours/week
Tutorial: 1 hour/week
Practical: hours/week
Lab: 2 hours/week

Course description:

This subject consists of three units related to nonmetals and their compounds; metals and their compounds; and organic compounds and synthetic materials necessary to develop background in chemistry that supports for the understanding and practicing related engineering works.

Course objectives:

After the completion of this subject, students will be able to explain the basic concepts related to the followings and apply them in the field of related engineering works:

- Nonmetals and their compounds
- Metals and their compounds
- Organic compounds and synthetic materials

Course contents:

Unit: 1: Non-metals and their compounds: [20]

1.1 Water:
- Source of water
- Hard and soft water
- Removal of temporary and permanent hardness of water
- Water treatment of domestic and industrial purpose

1.2 Ammonia:
- Lab preparation
- Manufacture by Haber's process
- Properties and uses

1.3 Nitric acid:
- Manufacture by Ostwald's process
- Properties and uses
- Nitrogen cycle
- Fixation of Nitrogen
- Chemical fertilizers
- Oxides of nitrogen as pollutant (general concept)
- Acid rain (due to oxides of nitrogen and oxide of Sulphur "Sulpher dioxide")
1.4 Halogens (Chlorine):
- Lab preparation
- Properties and uses

1.5 Hydrochloric acid:
- Lab preparation
- Properties and uses

1.6 Hydrogen Sulphide:
- Lab preparation
- Properties and uses

1.7 Sulphuric acid:
- Manufacture by contact process
- Properties and uses

1.8 Carbon and its compounds:
- Allotropes of carbon (reference of diamond & graphite & their structure).
- Oxides of carbon (Ref. carbon dioxide & carbon mono oxide as pollutants)- general idea only

Unit 2: Metals and their compounds: [15]

2.1 General study of metals and their components:
- Combined & free state of metals
- Chemistry of Metallic Carbonates, Sulphates, Chlorides and Nitrates

2.2 Alkali metals:
- General characteristics of Alkali metals
- Properties & uses of sodium

2.3 Alkaline earth metals:
- General characteristics of the Alkaline earth metals
- Properties & uses of calcium

2.4 Aluminum:
- Properties and uses

2.5 Coinage metals:
- General properties of coinage metals
- Properties and uses

2.6 Zinc:
- Properties & uses

2.7 Iron:
- Properties & uses

2.8 Lead:
- Properties & uses

2.9 Alloys:
- Definition
- Purpose of making alloys
- Composition,
- Properties and uses of alloys of steel, aluminum, copper and zinc
Unit: 3: Organic compounds and synthetic materials: [10]

3.1. Organic compounds
 3.1.1 Organic compounds:
 • Historical background, classification, and nomenclature
 • Functional groups and homologous series
 3.1.2 Comparison of aliphatic and aromatic compounds
 3.1.3 Saturated hydrocarbon: Properties of Methane
 3.1.4 Unsaturated hydrocarbon: Properties of Ethylene and Acetylene
 3.1.5 Aromatic compounds: Properties of Benzene

3.2. Synthetic materials:
 3.2.1 Polymer and polymerization
 • Definition
 • Types of polymer
 3.2.2 Rubber:
 • Types (Natural and Synthetic)
 • Preparation and uses.
 3.2.3 Polyvinyl chloride (PVC):
 • Preparation and uses
 3.2.4 Polythene:
 • Preparation and uses

Engineering Chemistry Practical II:

1. To compare the hardness of different types of water [2]
2. To prepare Bakelite (resin) in the laboratory [2]
3. To determine the condition in which corrosion takes place [2]
4. To investigate the action of acids on some metals (Zn, Mg, Fe, Al, Sn & Cu)(acids:- HCl, H₂SO₄(dil.) & HNO₃ (dil)) [2]
5. To prepare and study the properties of hydrogen gas [2]
6. To prepare and study the properties of ammonia gas [2]
7. To prepare and study the properties of hydrogen Sulphide gas. (This gas should not be prepare individually in woulf bottle but in Kipp's apparatus commonly) [2]
8. To detect the acid radicals (Cl⁻, NO₃⁻, SO₄²⁻, CO₃²⁻) by dry and wet ways (4)
9. To detect the basic radicals (Cu²⁺, Al³⁺, Fe³⁺⁺, Zn²⁺, CO²⁺, Ni²⁺, Ca²⁺, Ba²⁺, Mg²⁺) by wet ways [6]
10. To detect the acid and basic radicals (complete salt analysis) [6]
Textbooks:
2. A text Book of chemistry, Jha & Guglani
5. Elementary practical chemistry, MK. Sthapit

Reference books:
1. Inorganic chemistry, Bahl & Tuli
2. Elementary Organic Chemistry, P.N. Bargava
3. Fundamentals of chemistry, K.R. Palak
Engineering Drawing II
EG1204 ME

Total: 4 hours /week
Lecture: hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 4 hours/week

Course description:

This course deals with sectional view, pictorial projections, development of surfaces and intersection of solids.

Course objectives:

After completing this course the students will be able to:

• Draw sectional view of the given three dimensional solid,
• Draw pictorial projections from the given orthographic views,
• Develop the surfaces of the geometrical solids, and,
• Draw interpenetration line/curve for the given intersecting solids.

Course content:

Unit 1: Sectional Views [8]

1.1 Use of sectional views
1.2 Cutting plane line and hatching lines
1.3 Types of Section: Full section and Half Section
1.4 Exercises on Full Section [Sheet 1]
 Exercise on Half Section [Sheet 2]

Unit 2: Pictorial Projection: Isometric Drawing [12]

2.1 Introduction to Axonometric projection
2.2 Isometric projection and isometric drawing
2.3 Procedure of Making an Isometric Drawing
2.4 Non isometric Lines and Non isometric surfaces
2.5 Box and coordinate construction method
2.6 Angles in isometric
2.7 Circles and circular arcs in isometric
2.8 Orientation of object in isometric drawing
2.9 Exercise on isometric drawing of rectangular objects with horizontal and vertical planes [Sheet 3]
 Exercise on isometric drawing of rectangular objects with inclined planes [Sheet 4]
 Exercise on isometric drawing of objects with cylindrical surfaces and cylindrical holes [Sheet 5]
Unit 3: Oblique Drawing

3.1 Oblique projection and Oblique drawing
3.2 Procedure of Making an Oblique Drawing
3.3 Rules for Placing Object in Oblique
3.4 Angles, Circles and Circular Arcs in Oblique
3.5 Cavalier and Cabinet Projection
3.6 Exercise on oblique drawing of objects with plane and curved surfaces [Sheet 6]

Unit 4: Surface Development

4.1 General concepts and practical considerations
4.2 Development of Right solids: Cylinder, Prism, Cone and Pyramid
4.3 Development of Oblique solids: Cylinder, Prism, Cone and Pyramid
4.4 Development of Truncated solids
4.5 Exercise on development of truncated right prism and cylinder [Sheet 7]
 Exercise on development of truncated right pyramid [Sheet 8]
 Exercise on development of truncated right cone [Sheet 9]
 Exercise on development of oblique solids [Sheet 10]

Unit 5: Intersection of solids

5.1 Lines of intersection of geometric surfaces
5.2 Intersection of two cylinders
5.3 Intersection of two prisms
5.4 Intersection of a prism and a cylinder
5.5 Intersection of a prism and a pyramid
5.6 Intersection of a prism and a cone
5.7 Intersection of a cylinder and a cone
5.8 Intersection of a cylinder and a pyramid
5.9 Exercise on intersection of two cylinders, intersection of two prisms, intersection of a prism and a cylinder [Sheet 11]
 Exercise on intersection of a prism and a pyramid, intersection of a prism and a cone [Sheet 12]
 Exercise on intersection of a cylinder and a cone, intersection of a cylinder and a pyramid [Sheet 13]

Unit 6: Pattern Making

6.1 Pattern of three dimensional solids
6.2 Pattern of geometrical solids
6.3 Pattern of intersecting solids
6.4 Exercise on patterns of any two solid objects from Sheet 1 and 2 [Sheet 14]
 Exercise on patterns of any two solid objects from Sheet 7, 8, 9 and 10 [Sheet 15]

Reference:
Electronics Engineering - I
EG 1205 EX

Total: 2 hours/week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hours/week

Year: I
Semester: II

Course description:
This course deals with Electronic engineering related with mechanical engineering.

Course objectives:
At the end of the course the students will be able to
- Explain Importance of electronics in modern society.

Course contents:

Unit 1. Introduction:
1.1. Importance of electronics in modern society.
1.2. Use of electronics in Mechanical Control system and automation.

Unit 2. Introduction to Electronic Passive Components
2.1. Wires and Conductors. Bare wires, Single and Multi strand Cables used in installation, Winding Wires
2.2. Demonstration of various types of wires and cables.

Unit 3. Insulating Materials
3.1 Introduction to various insulating materials used in electronic engineering.
3.2 Demonstration of various insulating materials.

Unit 4. Resistors and Potentiometers
4.1 Introduction to Resistor.
4.2 Classification of resistors. Fixed Resistors, Variable Resistors, Adjustable Resistors and Special Resistors.
4.3 Resistor Color Codes
4.4 Demonstration of various types of Fixed Resistors and Variable Resistors.
4.5 Resistor Circuits. Series Circuit, Parallel Circuit and Series - Parallel Combined Circuits.

Unit 5. Special Resistors
5.1 Characteristics, application and demonstration of Thermistors (PTC, NTC), LDR (Light Dependant Resistor).
Unit 6. **Inductive Components**

6.1. Introduction to Inductive Components and basic construction.
6.2. Types of Inductors used in electronic equipment.
6.3. Classification of Inductors in terms of operation frequency.
6.4. Radio frequency Coils, Typical Values.
6.5. Coils employing Magnetic Cores, types of cores depending on their applications and function of Ferromagnetic Core in a coil.
6.6. Screening of Inductive Components.
6.7. Low frequency Inductive components. Chokes and Transformer
6.9. Demonstration of various types of inductive components indicating briefly their application.

Unit 7. **Transformer**

Introduction to Transformer. Basic construction and principle of operation.
Types of Transformer and their application. Mains Transformer, Audio Transformer.

Unit 8. **Capacitors**

8.1 Introduction of Capacitance and Capacitor and basic construction and units.
8.2 Principles of construction and units of Capacitance used in Electronics.
8.3 Fixed value capacitors
 - Classification of fixed value Capacitors based on Dielectric used.
 - i.e. Paper, Mica, Film and Ceramic Capacitors.
 - Range of Capacitances and operating voltages of each type of Capacitor.
8.4 Electrolytic capacitors
 - Basic construction of Aluminum Electrolytic Capacitors and Solid Tantalum Capacitors.
 - Range of Capacitances and operating voltages.
 - Demonstration of various types of fixed Capacitor.
8.5 Variable capacitors
 - Basic construction and classification of Variable Capacitors based on applications.
 - i.e. Tuning and Trimming Capacitors used in Radios.
 - Range of Capacitances and operating voltages.
 - Demonstration of various types of Variable Capacitors and their characteristics.

Unit 9. **Loud speakers**

9.1 Basic construction and principles of operation of dynamic loud speaker.
9.2 Head Phones and Ear Phones.
Unit 10. Microphones
10.1 Basic construction and principles of operation of Microphone.

Unit 11. Miscellaneous components and accessories
11.1 Basic construction, principles of operation and application of Switches, Magnetic Relays, Fuses and PCBs.
11.2 Demonstration of above components and briefing their application.

Unit 12. Cathode ray tube (CRT)
12.1 Basic construction, principles of operation.
12.2 Demonstration of Different type of CRT and their application.

Unit 13. Principles of semiconductors
13.2 Adding impurities to semiconductors, Donor and Acceptor impurity in intrinsic Germanium.
13.3 N Type and P Type Semiconductor.

Unit 14. Semiconductor diode
14.1 PN Junction Diode
 - Basic construction, Junction barrier & barrier potential.
 - Forward and Reverse Bias Characteristics of Junction Diode.
 - Point contact diode (Signal Diode).
 - Application of Diode. Half Wave Rectifier, Full Wave Center Tapped and Bridge Rectifier circuit.
 - Rectifier Filter Circuits. Principles of operation of Capacitor filter, RC and LC Filter Circuit
 - Clipping and Clamping Circuits
 - Checking of Diode using Ohm Meter.
14.2 Zener Diode
 - Basic construction and operation of a Zener diode.
 - Forward and reverse bias Characteristics of a Zener diode.
 - Application of Zener Diode as a Voltage Regulator.

Unit 15 introduction to bi-polar junction transistor (BJT).
15.1 Basic structure of BJT, PNP and NPN type.
15.2 Biasing of PNP and NPN Transistor principles of operation.
15.3 Voltage and Current Characteristics. Input and Output Characteristics, Collector current as a function of base current (Family of Collector characteristics curve), Cutoff, Saturation and DC Load line.
15.4 Basic Configuration of Transistor Circuits. Common Emitter (CE), Common Base (CB) and Common Collector (CC)
15.5 Demonstration various types of Transistors, Transistor Rating and interpretation of Transistor Data sheet.
15.6 Testing of Transistor by using Ohm meter.

Unit 16 Transistor amplifiers circuits [12]

16.1 Common Emitter (CE) Amplifier Circuit
- CE Amplifier circuit and bias arrangement.
- Principles of operation of CE Amplifier.
- Phase relationship between input and output signal.
- Current and power gain of CE Circuit.
- Input and Output resistance.

16.2 Common Collector (CC) Amplifier Circuit
- CC Amplifier circuit and bias arrangement.
- Principles of operation of CC Amplifier.
- Phase relationship between input and output signal.
- Current and power gain of CC Circuit.
- Input and Output resistance.
- Darlington Pair and main advantage.

16.3 Common Base (CB) Amplifier Circuit
- CB Amplifier circuit and bias arrangement.
- Principles of operation of CB Amplifier.
- Phase relationship between input and output signal.
- Current, Voltage and power gain of CB Circuit.
- Input and Output resistance.

16.4 Summary and brief application survey of CE, CC and CB Amplifier Configuration.

Unit 17. Leakage current & temperature stability of semiconductors [4]

17.1 Leakage Current in reverse biased crystal Diode. Ratio of forward to reverse or leakage current

17.2 Leakage current in Transistor. Explanation and discussion of ICBO, ICES, & ICEO reverse or leakage currents. Equation for total Collector Current in CB and CE circuit configuration

In CB circuit: \[IC = \alpha \times IE + ICBO \]
In CE circuit: \[IC = \beta \times IB + (\beta + 1) \times ICBO \]

Behavior of Transistors against surrounding temperature. Rate of change of leakage current in Germanium and Silicon Transistor

17.3 Thermal runway due to leakage current and Stability factor. Effect of temperature on stability of Q – point.

17.4 Temperature stabilization in Transistor using Thermistor and Diode. Use of Heat sink to prevent the Transistor from over heating.
Unit 18. Bias methods used in transistor amplifiers

18.1 Concept of DC bias in a linear Amplifier.
18.3 Base Bias for NPN Transistor. Principle of operation.
18.4 Collector – Feedback Bias. Principle of operation.

Unit 19. RC coupled small signal common emitter amplifier

19.1 Function and principles of operation of RC coupled Amplifier circuit.
19.2 Graphical analysis on basis of Collector characteristics curves.
 Determination of Q-point for class – A operation, Load line and methods plotting.
19.3 Current, Voltage and Power gain.
19.4 Dynamic transfer characteristics curve, i.e. Collector current plotted against base current for a given collector supply voltage.
19.4 Function and principles of operation of Transformer coupled Amplifier circuit.
19.5 Function and principles of operation of Direct coupled Amplifier circuit.

Unit 20. Introduction to feedback in transistor amplifiers

20.1 Introduction to feedback. Positive and Negative feedback.
20.2 Typical feedback circuits used in Transistor AF Amplifier.
20.3 Voltage feedback circuit (Collector to base bias using resistor, capacitor and RC network).
20.4 Current feedback circuit (with unbypassed emitter resistor).

Unit 21. Special semiconductor devices

21.1 Silicon Controlled Rectifier (SCR)
 - Basic construction & physical features of SCR
 - Voltage - current characteristics.
 - Application of SCRs
21.2 Unijunction Transistor (UJT)
 - Basic construction & physical features of UJT
 - Voltage - current characteristics.
 - Application of UJT. (Relaxation Oscillator and Relay control circuit)
21.3 Junction Field Effect Transistor (JFET)
 - Basic construction & physical features of JFET
 - Voltage - current characteristics of JFET.
 - Application of JFET.
21.4 Metal Oxide Semiconductor (MOSFET)
 - Basic construction & physical features of MOSFET
 - Voltage - current characteristics.
 - Application of MOSFET.
21.5 Photo Diode and Opto Coupler
 - Basic construction & physical features and operation of Photo diode.
 - Application of Photo Diode and Opto Coupler.

21.6 Capacitance Diode (Varactor Diode)
 - Basic construction & physical features and operation of Varactor diode.
 - Application of Varactor diode.

Material Science
EG 1206 ME

Year: I
Semester: II

Total: 4 hours /week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hours/week

Course description:
This course deals various problems regarding materials and machining should be solved by technicians with their introductory knowledge about materials. It also describes the knowledge for material selection, substitution, property evaluation and various materials types.

Course objectives:
After completing this course the students will be able to:
• Understand about different properties of materials and their dependence on.
• Understand about the principle of iron and steel production.
• Explain the principle of heat treatment.
• Develop knowledge for material selection.

Course contents:
Unit 1: Introduction to Material Science, Importance and Scope of Material Science [5]
 1.1 Atoms, molecules and sub particles as the binding block of all materials, structures of atoms.
 1.2 Classification of materials, according to
 ▪ State
 ▪ Natural, artificial
 ▪ Metals, non-metals
 1.3 Difference between metals and non metals. Fundamental difference in properties of metals and non metals and their explanation on the basis of atomic structure.

Unit 2: General Properties of Materials [6]
 2.1 Physical Properties
 ▪ Luster
 ▪ Color
 ▪ Density
 2.2 Mechanical Properties
 ▪ Plasticity, elasticity
 ▪ Behavior of materials under tensile stress
 ▪ Ductility, malleability
 ▪ Brittleness, hardness and toughness
Behavior under impact and repeated stress
Creep

2.3 Electrical Properties
- Conductor, semi-conductor, insulator, super-conductor
- Electrical conductivity, receptivity, specific conductivity
- Effect of temperature in conductivity.

2.4 Magnetic Properties
- Ferro-magnet, Para-magnet, Dia-magnet
- Magnetically soft and hard material. Hysteric loss

2.5 Thermal Properties:
- Specific heat, latent heat
- Thermal conductivity
- Thermal expansion and coefficient of thermal expansion
- Consideration of thermal properties in material selection.

Unit 3: Iron and Steel Production [6]
3.1 Introduction
3.2 Classification of iron and steel
3.3 Blast furnace, iron core, processes in pig iron production
3.4 Production of steel
3.5 Various Steel making processes
- Bessemer Process
- Open hearth Process
- Electric Process
- Duplex Process

Unit 4: Iron Carbon System [6]
4.1 Effect of carbon in iron
4.2 Thermal equilibrium diagram, cooling curves
4.3 Solid solution, chemical compound and mechanical mixture in iron carbon system
4.4 Reading of iron-carbon diagram

Unit 5: Metals [12]
5.1 Carbon Steel
- Classification of carbon steel
- Composition and metallurgy of carbon steel
- Properties and uses of various carbon steel
5.2 Alloy Steel
- Classification of alloy steel
- Effect of alloying elements in steel
- Properties and uses of various alloy steel
5.3 Heat treatment process
- Introduction of heat treatment of carbon steel
- Annealing Process
- Hardening Process
- Tempering Process
- Surface hardening Process
- Normalizing Process

5.4 Cast iron
- Introduction
- Types, Properties and Uses

5.5 Non-Ferrous Metals
- Introduction
- Aluminum and its alloys: composition, properties and uses
- Copper and its alloys: Composition, properties and uses
- Bronze and brass: properties and uses.

5.6 Mechanical testing of Metals
- Testing of elastic and plastic behavior
- Testing for fatigue
- Testing for hardness

Units 6: Non Metals

6.1 Introduction to non metals
6.2 Lubricants: properties, classification and uses
6.3 Fuels: Properties, classification and uses
6.4 Polymers: Properties, classification and uses
6.5 Rubber: Properties and uses
6.6 Ceramics: Properties, classification and uses
6.7 Composite materials: properties, classification and uses
6.8 Glass: properties, classification and uses

Lab/Practical

Lab 1 Corrosion of metals- Identification/ Protection
Lab 2 Micro Structure observation of Metals
Lab 3 Identification of metals and non metals
Lab 4 Testing of mechanical properties of metals
 (Stress strain diagram, Young’s modulus, Elastic and Plastic behavior of metals, hardness, Fatigue, Impact)
Lab 5 Heat treatment
 (Annealing, hardening and tempering)

Reference/Text Books:
1. H.S. Bawa, Material and Metallurgy, TMG edition, New Delhi
2. A.K Gupta, R.C Gupta, Material Science, S.Chand and Co. Ltd, New Delhi
Course description:

This course provides the students with a fundamental knowledge of the principles, concepts and application of engineering mechanics for solving engineering problems. The students will become familiar with the common types of problems of Statics and Dynamics and learn the methods to solve them.

Course objectives:

General
After completion of this course the students will be able to apply knowledge of mechanics in solving practical engineering problems.

Specific
After completion of this course the students will be able to

- Describe fundamental principles and concepts of mechanics.
- Explain the principles of forces and their effects on particle and rigid body
- Describe the concept of equilibrium in two dimensions and three dimensions
- Analyze concentrated and distributed forces
- Describe theory and concept of dry friction
- Solve different types of numerical problems of statics
- Describe kinematics and kinetics of particles and rigid bodies
- Explain Newton's laws of motions
- Describe principles of work and energy
- Solve different types of numerical problems of dynamics

Course contents:

Unit 1. Introduction [3]
1.1 Definition, classification and scope of engineering mechanics
1.2 Basic concepts
1.3 Physical quantities
1.4 Reference frame of axes
1.5 System of units
Unit 2. **Static of particles and rigid bodies**
2.1 Introduction to static
2.2 Concepts of force and force system
2.3 Resultant of a force system
2.4 Determination of resultant of different force systems
2.5 Resolution and composition of forces
2.6 Rectangular components of force
2.7 Moment of a force about a point
2.8 Moment of a force about an axis
2.9 Principle of Moments
2.10 Torque and couple
2.11 Related problems

Unit 3. **Equilibrium**
3.1 Introduction to the concept of equilibrium
3.2 Conciliations of equilibrium in two- and three dimensions
3.3 Body constraints and free body diagrams

Unit 4. **Distributed forces**
4.1 Concept of concentrated and distributed forces
4.2 Centre of gravity and centroids
4.3 Location of centroids and centre of gravity of lines, areas and solid bodies with regular and composite shapes and forms
4.4 Second moment of area and moment of inertia
4.5 Related problems

Unit 5. **Friction**
5.1 Introduction
5.2 Definition
5.3 Nature of friction and types
5.4 Theory of dry friction
5.5 Laws of friction
5.6 Angle of friction and coefficient of friction
5.7 Friction on an inclined plane
5.8 Related problems

Unit 6. **Dynamics**
6.1 Introduction to dynamics
6.2 Kinematics of particles
6.3 Motion and its types
6.4 Rectilinear motion of particles: displacement, velocity, speed, acceleration and distance traveled by particles
6.5 Curvilinear motion of particles: radius vector, displacement, velocity, and acceleration
6.6 Motion under gravity
6.7 Relative motion and dependent motion
6.8 Kinematics of rigid bodies
6.9 Introduction to kinetics
6.10 Newton’s laws of motion
6.11 Equations of motion and related problems
6.12 Linear momentum of particles
6.13 Principle of impulse and momentum

Unit 7. Work, power and energy [10]
7.1 Relation between rpm, torque and power
7.2 Application of work and energy principles to rigid bodies
7.3 Potential and kinetic energy
7.4 Law of conservation of mechanical energy
7.5 Related problems

Unit 8. Tutorials [8]
7 assignments
2 assessment tests

Lab/ Practical

List of laboratory experiments [7]
1 Verification of parallelogram law and triangle law of forces
2 Verification of polygon law of forces
3 Verification of principle of moments
4 Determination of coefficient of friction (µ) between wood, steel, copper and glass (horizontal and vertical)
5 Determination of moment of inertia by flywheel
6 Determination of the support reaction of simply supported beams with concentrated loads at one or more points
7 Identification of composition and resolution of forces by vector method

References
4 Hibbler R.C: Engineering mechanics, Statics and Dynamics
Workshop Technology II
(Foundry & Welding)
EG 1208 ME

Year: I
Semester: II

Total: 10 hours /week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: 7 hours/week
Lab: hours/week

Course description:

This course is the extension one for the students who have undergone manufacturing process. The course deals with further new and advanced methods such as foundry and welding of work performances. Technicians need to acquire advanced techniques and performance standard so as to be competent in the mechanical engineering field.

Course objectives:

After completing this course the students will be able to:
- Understand and follow the safety rules in foundry and welding shops;
- Identify and manipulate of different types of tools, equipments and their accessories and measuring instruments used in foundry and welding shop,
- Make simple patterns from wood and metal as per drawing;
- Produce casting parts as per supplied drawing using casting tools and equipments;
- Produce parts as per specification using forging hand tools in forging Shop;
- Perform the heat treatment of forges parts;
- Describe the different types of welding methods and processes.
- Weld the given job (mild steel plates, rods) as per supplied drawing in flat position using A. C. transformer;
- Connect and disconnect/dismantle oxyacetylene welding equipments set;
- Identify, select and adjust oxyacetylene welding equipments set;
- Identify, select and adjust oxyacetylene flame for the given job;
- Weld the given job in flat position using oxyacetylene flame with or without filler rod;
- Cut mild steel plate using cutting torch in straight, bevel and circle shape;
- Braze the given job by selecting hard solders, fluxes in flat position [butt, lap, and fillet joints];

Course contents:

A. Foundry:
Unit 1. Introduction to foundry:
1.1. Introduction to foundry practice
1.2. Development, advantages and uses of casting
1.3. Safety in foundry practice
Unit 2. Sand casting:
 2.1. Pattern making
 ▪ Material for pattern
 ▪ Consideration of draft and shrinkage of metal
 2.2. Sand molding hand tools
 2.3. Sand molding process
 2.4. Core making
 2.5. Melting furnace: - construction and uses
 ▪ Cupola, induction and crucible furnace
 2.6. Sand casting process
 ▪ Safety clothing, melting of metal, pouring temperature and superheat, the ladle, pouring the melted metal into the mold, cleaning the casting.

Unit 3. Molding process, their advantages and uses:
 Sand mold
 ▪ Green sand mold, dry sand mold shell mold

B. Forging:

Unit 1. Introduction to forging
 1.1. Introduction to hand forging, its application and advantages, Safety in forging practice
 1.2. Hand forging tools: nomenclature, application and care

Unit 2. Hand forging operations:
 2.1. Forging operations: Bending, Cutting down, Setting down, Swaging, Squeezing Upsetting, Punching and drifting, Forge welding

Unit 3. Heat treatment of forged materials:
 3.1 Introduction to heat treatment, Annealing, Hardening, Tempering

C. Welding:

Unit 1. Introduction to welding:
 1.1. Introduction to welding
 1.2. Types of welding process used in Nepal
 1.3. Selection of different types of welding processes

Unit 2. Introduction to arc welding:
 2.1 Introduction to arc welding
 2.2 Arc column theory
 2.3 Power sources for arc welding
 2.4 Safety precautions in arc welding

Unit 3. Arc Welding equipment and accessories:
 3.1 Arc welding machines: types, uses and care
 3.2 Problems in welding machines: troubles, causes and remedies
3.3 Arc welding machine accessories and operators’ accessories.

Unit 4. Arc welding electrode: classification, application and uses: [1]

Unit 5. Arc Welding fundamentals and techniques: [3]

5.1 Condition of welding table and welding machine
5.2 Influencing factors in arc welding
 - Correct position of welder
 - Face protection of welder
 - Arc length
 - Angle of electrodes
 - Speed of travel of electrodes
 - Amperage
5.3 Method of striking an arc, their application and advantages
 - Tap method
 - Scratch method
5.4 Weld movement, their types, application and advantages
5.5 Welding techniques
 - Padding or build up
 - Crater formation
 - Undercutting
 - Weaving the electrode
 - Cleaning a weld

Unit 6. Introduction to oxyacetylene (Gas) welding: [2]

6.1 Oxy-acetylene welding principle
6.2 Advantages and application of oxy-acetylene welding
6.3 Safety precaution in oxy-acetylene welding
 - Personnel safety
 - Fire prevention
 - Care of cylinders, hoses, acetylene generators
 - Lighting of welding torch

Unit 7. Production, properties, uses, storages and handling of oxygen and acetylene gases: [1]

Unit 8. Oxyacetylene welding equipment and accessories, their Uses and care: [4]

8.1 Oxyacetylene welding equipment and accessories, their uses & care:
8.2 Acetylene cylinder/generator
8.3 Oxygen regulator and acetylene regulator
8.4 Wrenches
8.5 Hoses, hose clips and hose coupler
8.6 Welding torch-low pressure, equal pressure
8.7 Welding nozzle-solid piece, multiple piece
8.8 Filler rod holder
8.9 Gas lighter
8.10 Operator’s safety accessories
Unit 9. Filler rod and flux-classification, selection, used and storages: [1]

Unit 10. Oxy-acetylene welding operations and welding techniques: [4]
 10.1 Equipments set up
 10.2 Testing for leaks
 10.3 Lighting the torch and a flame adjustment
 10.4 Shutting off equipment
 10.5 Oxyacetylene flame-types and application
 10.6 Running a bead with filler rod
 10.7 Backfire and flashback
 10.8 Restarting the weld
 10.9 Welding techniques-leftward and rightward welding
 10.10 Weld movements
 10.11 Weld appearance

Unit 11. Welding joints, welding position and types of welds: [2]
 11.1 Welding joints, their types and application
 11.2 Welding positions, their types and application
 11.3 Types of weld and their applications

Units 12. Distortion in welding, types of distortion and their control: [2]

Units 13. Oxygen gas cutting: [3]
 13.1 Gas cutting:
 13.2 Main inflecting factors of gas cutting
 ▪ Composition of steel
 ▪ Temperature of work-piece
 ▪ Thickness of work-piece
 ▪ Surface defects
 ▪ Purity of oxygen
 ▪ Temperature of oxygen
 13.3 Cutting methods
 ▪ Oxygen cutting (manual and machine)
 ▪ Oxygen deseaming
 ▪ Oxygen gauging and lancing
 13.4 Selecting of tip and working pressure in manual gas cutting
 13.5 Cleaning of the cutting tips
 13.6 Examples of correct and incorrect techniques in manual gas cutting

Unit 14. Brazing: [3]
 14.1 Brazing principle, application and advantages
 14.2 Brazing equipment and materials
 14.3 Brazing procedures
 ▪ Requirement for a successful brazing
 ▪ Brazing operation
- Suitable joint design for brazing.

2. Lab/practical

Practical I: Foundry

Molding exercise (practical)
1. Single Wood pattern making [5hr]
2. Split wood pattern making [8hr.]
3. Core box making [6hr]
4. Sand molding for split pattern with core (6hr)
5. Making wax suitable pattern such as anyone of flying bird, twisted spiral coiled or any simple irregular article. [2hrs]
6. Making moulds with plaster of Paris of above no. 6 [2hrs]
7. Casting on sand moulds [2hrs]
8. Casting on permanent moulds [2 hr.]
9. Casting on investment mould [2 hr.]

Practical II: Forging:

Forging exercise (practical)
1. Safety and familiarization with equipment and tools [1 hr]
2. Square piece [3 hr]
3. Rectangular Small Flat Chisel [3 hr]
4. Heat treatment of Chisel [5 hr]

Practical III: Welding

Arc welding exercise (practical):
1. Safety precaution and familiarization with welding machine and accessories [3hr]
2. Striking an arc welding on plate [3 hr]
3. Padding on flat surface [5 hr]
4. Closed and Square butt joint [5 hr]
5. Corner joint [4 hr]
6. Tee joint [5 hr]
7. Lap joint [4 hr]
8. V-butt joint [6 hr]
9. Arc cutting on mild steel plate [4 hr]

Gas Welding Exercise (practical):
1. Lining without filler rod [4 hr]
2. Lining with filler rod [4 hr]
3. Butt joint [4 hr]
4. Corner joint [4 hr]
5. Lap joint [4 hr]
6. Tee joint [4 hr]
7. Straight gas cutting [3 hr]
8. Circular gas cutting [2 hr]

Brazing Exercise (practical):
1. Closed square butt joint brazing [3 hr]
2. Lap joint brazing [3 hr]
3. Tee joint brazing [4 hr]

Suggestion for instructions:

1. Note: every practical exercise [assignment] must be accompanied with performance report in A4 size paper. Assignments, Drawing, and Performance Report must be submitted for the work evaluation.

Note: Here certain portion of Forging subjects added, thinking it necessary relevant subjects for workshop, however, it is not included on prescribe syllabus on Workshop Technology II (Foundry and welding)

Reference:

3. Manufacturing science technology [manufacturing processes & machine tools], K. Vara Prasada Rao, New age international publishers, 4835/24, Ansari road, Daryaganj, New Delhi
Second Year
(Third and Fourth Semesters)
Third Semester

Subjects:

1. EG 2106 EX Electronic Engineering II
2. EG 2102 ME Fluid Mechanics & Fluid Machine
3. EG 2103 ME Thermal Engineering I
4. EG 2105 ME Machine Drawing
5. EG 2107 ME Elements of Engineering Economics
6. EG 2108 ME Strength of Materials
7. EG 2101 AE Automotive Technology I
8. EG 2102 AE Metrology and Measurement
Electronics Engineering- II

EG 2106 EX

Year: II
Semester: I

Total: 3 hours /week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hours/week

Course description:

This course deals with the general theories and practical work of electronics related to mechanical subject. It also describes various applications of theories including digital electronics and logic devices.

Course objectives:

After completing this course the student will be able to:

• Identify integrated circuit
• Identify digital electronics
• Identify combinational logic devices
• Identify logic families and basic characteristics
• Identify sequential logic devices
• Identify analog and digital conversion
• Identify memory and addressing

Course contents:

Unit 1. Introduction to integrated circuit [2]

1.1 Introduction to IC, basic construction of IC chip
1.2 Monolithic Integrated circuit.
1.3 Large scale Integrated circuit (LSI).
1.4 General classification of Integrated Circuits based on application. (Linear and Digital ICs).
1.5 Illustration of some Linear ICs. Voltage regulator IC, Timer IC, OP Amplifier etc

Unit 2. Introduction to digital electronics [6]

Introduction to Number System.

- Decimal Number System
- Binary Number System
- Octal Number System
- Hexa -Decimal Number System
- Conversion of Number system

Introduction to Binary Arithmetic

- Addition, Subtraction, Multiplication, Division.
- Signed and Unsigned Binary Numbers.
- Binary Coded Decimal Numbers and ASCII Codes.

Unit 3. Fundamentals of digital electronics [12]

3.1 Principles of operations of two state operation and its advantages.
3.2 Operation of Transistor as a Switch and Relay Control.
3.3 Introduction to Logic Gates (NOT, AND, OR, NAND, NOR, XOR). Symbols, Truth Tables, Boolean Algebra and Associate Rules.
3.4 Boolean Algebra and Associate Rules.
3.5 De-Morgan’s Theorem.
3.6 Universal Gate conversion.
3.7 Minimization of Logical Expressions using Boolean Algebra.
3.8 Application of Karnaugh’s Map (K-Map) for minimization of Logical expressions.

Unit 4. Introduction to combinational logic devices [6]

4.1 Encoder / Decoder – Decimal to Binary, Binary to Gray Code, Priority Encoder.
4.2 Seven Segment Display Decoder.
4.3 Multiplexer and De-Multiplexer.
4.4 Parity Generator and Checker.
4.5 Half Adder, Full Adder and Subtractor.
4.6 Nibble and Bite Adder and Subtractor.

Unit 5. Introduction to logic families and basic characteristics [6]

5.1 TTL Family and Devices.
5.2 CMOS Family and Devices.
5.3 ECL Family and Devices.
5.4 Comparison of above mentioned Logic families in terms of Input/Output Voltage, Current, Supply Voltage, Operation temperature, Fan-in, Speed and Noise Margin.
5.5 Standard available Devices in different families and Compatibility.
5.6 External Driving Devices. Opto-Coupler, LED, Relays.

Unit 6. Introduction to sequential logic devices [20]

6.1 Mono-stable, Bi-stable and Astable Devices.
6.2 Latches and Flip-flop.
6.3 Triggering of Flip-flop.
6.4 SR and D Flip-flop.
6.5 Clocked Flip-flop.
6.6 JK, T Flip-flop.
6.7 Master –Slave Flip-flop.
6.8 Synchronous and asynchronous Counter.
6.9 Binary Counters, BCE Counters and Mode N counters.
6.10 Shift Registers – Shift left and Shift Right.
6.11 Serial and Parallel registers.
6.12 Ring Counters.
Unit 7. **Introduction to analog and digital conversion** [6]

7.1 Analogue to Digital Conversion.
7.2 Digital to Analogue Conversion.
7.3 Basic characteristics of Converters – accuracy and speed.

Unit 8. **Introduction to memory and addressing** [4]

8.1 Functions of Flip-flop as Memory.
8.2 Types of Memory: ROM, RAM, PROM, EPROM, EEROM, UVROM.
8.3 Static and dynamic Memory.
8.4 Memory addressing and address decoding logic.
Fluid Mechanics and Fluid Machines

EG 2102 ME

Year: II
Semester: I

Total: 5 hours/week
Lecture: 3 hours/week
Tutorial: 1 hours/week
Practical: hours/week
Lab: 1 hours/week

Course description:

This course deals with the general theories and equations of fluid mechanics. It also describes various applications of theories including water turbines and pumps.

Course objectives:

After completing this course the student will be able to explain:

• General properties of fluids
• Various characteristics of fluid at static and kinematics conditions
• Basic theories and equations of fluid mechanics with their applications
• Various phenomena of viscous flow
• Dynamic action of fluid
• Theories and working principles of fluid machines

Course contents:

Unit: 1 Properties of fluid [3]

1.1 General introduction of fluid
1.2 Density, specific volume, specific weight and specific gravity
1.3 Fluid viscosity
1.4 Surface tension and capillarity
1.5 Compressibility and Bulk modulus

Unit 2: Fluid static [5]

2.1 Fluid pressure, fundamental equation of fluid static and pressure head
2.2 Absolute pressure, gauge pressure and atmospheric pressure
2.3 Pressure measuring devices and manometer
2.4 Force on plane and curved submerged bodies
2.5 Buoyancy, flotation and stability

Unit 3: Kinematics of fluid [2]

3.1 Description of fluid motion, path line and stream line
3.2 Types of fluid displacement
3.3 General types of fluid flow
Unit 4: **Basic equations of fluid flow** [7]

4.1 Continuity equation
4.2 Bernoulli’s equation
4.3 Momentum equation
4.4 Applications of basic equations of fluid flow

Unit 5: **Viscous flow** [7]

5.1 Laminar and turbulent flow
5.2 Reynold’s number
5.3 Flow of viscous fluid in circular pipe: Hagen-Poiseuille equation
5.4 Velocity distribution
5.5 Boundary layer concept
5.6 Lift and drag on immersed body
5.7 Resistance to flow and head losses in close conduits
5.8 Flow over rectangular and triangular notches or weirs, co-efficient of discharge

Unit 6: **Dynamic action of fluid** [5]

6.1 Dynamic force and power
6.2 Force exerted by fluid jet on stationary and moving flat/ curved plates

Unit 7: **Water turbines** [9]

7.1 Introduction of hydraulic machines
7.2 History of development of water turbines
7.3 Types of water turbines
7.4 Working principles of Pelton, Francis, Kaplan, Axial flow and Cross flow turbines
7.5 Head, efficiencies, specific speed and general characteristics curve of water turbines
7.6 Introduction of water turbine governor and their functions

Unit 8: **Pumps** [7]

8.1 Classification (positive displacement and roto-dynamic pumps)
8.2 Working of centrifugal, axial and piston pumps
8.3 Pump characteristics and selection of pump
8.4 Hydraulic ram
8.5 Similarity laws for turbine and pump
Lab/Practical

1. Study of properties of fluid
2. Validity of Bernoulli’s theorem
3. Losses in pipe flow through bends and fittings
4. Performance characteristics of Pelton turbine
5. Performance characteristics of Francis turbine
6. Compare the characteristics of various pumps

Suggestions for instruction:

1. Give appropriate examples of surrounding.
2. Use SI units as well as possible.
3. Solving related problems in the class and give as home assignment.
4. Use as much as figures and diagrams with direction of flow.
5. Site visit of power plant, irrigation plant and drinking water supply system are advantage for this course

References:

4. Dr. Jagdish Lal 2002, Fluid Mechanics and Hydraulics, Metropolitan Book Co. Private Ltd., New Delhi India
5. Dr. Jagdish Lal 1997, Hydraulic Machines, Metropolitan Book Co. Private Ltd., New Delhi India
Thermal Engineering I
EG 2103 ME

Total: 5 hours/week
Lecture: 3 hours/week
Tutorial: 1 hour/week
Practical: 0 hours/week
Lab: 1 hour/week

Year: II
Semester: I

Course description:
This course deals with the fundamental laws of thermodynamics and modes of heat transfer.

Course objectives:
After completing this course the students will be able to explain:
• laws of thermodynamics
• properties of ideal gas
• different thermodynamic cycles

Course contents:

Unit 1: Introduction to thermodynamics [4]
1.1 Thermodynamic system and surroundings
1.2 Thermodynamic properties
1.3 Temperature, heat and thermal equilibrium
1.4 Sensible heat and latent heat
1.5 Units
1.6 Related problems

Unit 2: Introduction to Heat [6]
2.1 Expansion of solid, liquid and gases
2.2 Modes of heat transfer
2.3 Thermal conductivity
2.4 Related problems to heat transfer

Unit 3: Ideal gas processes [6]
3.1 Effect of heat on volume
3.2 Pressure-temperature-volume relationships of gases
 • Volume-temperature relationship at a constant pressure
 • Pressure-volume relationship at a constant temperature
 • Pressure-temperature relationship at constant volume
 • General gas law
Related problems on gas laws

Unit 4: Zeroth law of thermodynamics [4]
4.1 Definition and applications
4.2 Different types of thermometer and their applications

Unit 5: First law of thermodynamics [6]
5.1 Definition
5.2 General energy equation
5.3 Specific heat of gases
5.4 Internal energy
5.5 Enthalpy
5.6 Related problems

Unit 6: Basic thermodynamic processes [6]
6.1 Constant volume process
6.2 Constant pressure process
6.3 Constant temperature process
6.4 Adiabatic process
6.5 Polytropic process
6.6 Related problems

Unit 7: Second law of thermodynamics [6]
7.1 Definition
7.2 Uses of 2nd law
7.3 Reversible and irreversible processes
7.4 Entropy
7.5 The T-s diagram
7.6 Related problems

Unit 8: Steam engine/turbine cycles [6]
8.1 Carnot cycle: assumptions, operation and performance
8.2 The Rankine cycles: operation, application and performance
8.3 Rankine cycle with superheat
8.4 The enthalpy-entropy chart
8.5 Use of steam tables and chart
Lab

- Determine thermal conductivity of a given specimen.
- Compare different types of thermometers
- Verify ideal gas laws
- Determine specific heat of an ideal gas
- Demonstrate steam tables and charts

Suggestion for instruction:

1. Use illustrative teaching materials like model, charts, and overhead transparencies to visualize the complex parts.

Reference:

Course description:

This course deals with drawings about machines, elements of machine, standard graphical signs, symbols and notations, different type of fits with limits and tolerances, layout- installation, assembled and detail drawings of a plant or machine.

Course objectives:

After completing this course the students will be able to:

- Read and sketch different universally accepted graphical signs, symbols and notations.
- Understand the importance of limits, fits and tolerances in machines.
- Draw few common machine elements with prevailing common practices.
- Prepare working (detail & assembled) drawings.
- Understand layout and installation drawings.

Course contents:

Unit: 1 Machining symbols, surface roughness [4]

1.1 Introduction to machining symbols.
1.2 Introduction to surface roughness symbols and their meaning.
1.3 Drawing exercises:
 - Exercise in machining symbols:
 - (Not less than five exercises)
 - Exercise in surface roughness symbols:
 - (Not less than five exercises)

Unit: 2 Limits, tolerances and fits (8 hours)

2.1 Introduction to Nominal and basic size, limits of size.
2.2 Introduction to fundamental deviations, tolerances, upper & lower deviation.
2.3 Introduction to clearance fit, interference fit & transition fit.
2.4 Introduction to basic hole & basic shaft system.
2.5 Introduction to go, no-go gauge, interchangeability & selective assembly.
2.6 Drawing exercises:
 (Not less than five exercises)
Unit: 3 Gear, Pulley and Belt: (8 hours)
3.1 Introduction to spur gearing, definitions of spur gear terminology & their definitions
 ▪ Construction of base circle.
 ▪ Construction of spur gear teeth (involute) profile.
 ▪ Drawing exercises:
 (Not less than three exercises)
3.2 Introduction to Pulleys & Belts
 ▪ Fast and loose pulleys
 ▪ V-belt pulleys
 ▪ Rope pulleys
 ▪ Drawing exercises: Not less than three exercises)

Unit: 4 Working Drawing (Detail or production drawing): (16 hours)
4.1 Introduction – drawing layout, title box, bill of materials (part list)
4.2 Sketch of details of different components of a machine with free hand dimensioning.
4.3 Review of different type of sectioning- full, half, partial (or broken), revolved, removed and offset.
4.4 Review of common dimensioning types.
4.5 Drawing exercises: (Not less than four exercises)

Unit: 5 Working drawing (Assembly drawing): (16 hours)
5.1 Introduction to drawing layout, detail item list (bill of materials), drawing numbers (sheet numbers), sheet folding and filing styles.
5.2 Accepted norm and common practices for assembly drawing.
5.3 Introduction to sectioning & dimensioning concept for assembly drawing.
5.4 Introduction to sequences of preparing the assembly drawing.
5.5 Drawing exercises: (Not less than five exercises)

Unit: 6 Installation and layout drawing): (8 hours)
6.1 Introduction to plant or machine layout and installation drawing.
6.2 Drawing exercises:
 (Observation and group discussion of minimum two sets of installation and layout drawings)

Reference:
Elements of Engineering Economics
EG2107 ME

Year: II
Semester: I

Total: 2 hours /week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: hours/week

Course description:
This course deals with basic concepts and methodologies to conduct financial evaluations and economic analysis related to engineering projects and/or reviewing and evaluating such work done by others.

Course objectives:
After completing this course the students will be able to:
- Explain and use the terminology that are used in Engineering Economics
- Use interest factor table and conduct the cash flow analysis of engineering projects.
- Carry out the economical evaluation of the projects.
- Understand the project risk and their mitigation procedures.

Course content:

Unit 1: Introduction to Engineering Economics [2]
 1.1 Role of engineering/technical manpower in organization
 1.2 Types of engineering economic decision

Unit 2: Brief understanding of Financial Statements [4]
 2.1 Familiarization with balance sheets, income statement and cash-flow statement components
 2.2 Calculation of financial ratios and their familiarization
 2.3 Related numerical problems on 2.1 and 2.2

Unit 3: Cost and Revenue [2]
 3.1 The elements of cost
 3.2 Direct cost, Indirect cost and Overhead cost allocation
 3.3 Job and Process costing
 3.4 Revenue and its types
 3.5 Related numerical problems on 3.2 and 3.3
Unit 4: Time value of Money, Interest Rate and Depreciation concept [4]
4.1 Time value of Money
4.2 Simple and compound interest rates, effective interest, and continuous compound interest
4.3 Depreciation methods, straight line, declining balance method
4.4 Related numerical problems on 4.2 and 4.3

Unit 5: Types of cash Flows and their Formulas [4]
5.1 Types of cash flows and its significance
5.2 Single cash flow formulas
5.3 Uneven cash flow series
5.4 Equal cash flow series
5.5 Linear gradient series
5.6 Geometric gradient series
5.7 Related numerical problems on 5.2, 5.3, 5.4, 5.5 and 5.6

Unit 6: Economic Equivalence of projects [2]
6.1 Definition and simple calculations
6.2 General observation about equivalence calculations
6.3 Related numerical problems on 6.1

Unit 7: Project Evaluation Techniques [8]
7.1 Initial Project screening methods
 ▪ Payback period
 ▪ Benefits and flaws of payback period method
7.2 Net Present Value (NPV) analysis
 ▪ Net Present Value criterion
 ▪ The meaning of Net Present Value
7.3 Future Value and Annual Equivalent analysis
7.4 Internal Rate of Return (IRR) analysis
7.5 Comparing revenue and service projects, projects with different analysis period and project live
7.6 Related numerical problems on 7.1, 7.2, 7.3, 7.4 and 7.5

Unit 8: Benefit and Cost Analysis [3]
8.1 Calculation of Benefits and Costs
8.2 Definition on Benefit-Cost (B/V) ratio
8.3 Relation between B/C ratio and NPV
8.4 Related numerical problems on 8.1
Unit 9: Project Risk

9.1 Definition of project risk
9.2 Sensitivity analysis
9.3 Break-even analysis
9.4 Scenario analysis
9.5 Related numerical problems on 9.2, 9.3 and 9.4

Suggestions for instructions:

1. The method of teaching is lecture on theory augmented by relevant examples.
2. Use relevant diagrams and charts as much as possible.
3. Use calculator or/and interest factor table during calculation demonstration.
4. Give examples of locally operating engineering activities and projects as much as possible.
5. Demonstrate the basic computer applications using MS Excel program if the computer facility is available.

Reference:

Strength of Materials
EG 2108 ME

Year: II
Semester: I

Total: 5 hours /week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 2 hours/week

Course description:
In Engineering every structure is designed and its drawing is prepared, then the work is executed. After design the structural members are checked for various stresses whether the member is safe or not for the given load conditions. Then the size and the position of the member are fixed. The responsibility of Diploma holder is to carry out the job successfully under the guidance of an engineer and by the support of tradesmen.

Course objectives:
After completing this course the students will be able to:
• Classify the materials according to engineering properties
• Calculate the forces coming in the member for given loading conditions.
• Know the allowable stresses in various conditions of loading.
• Fix the size and position of various members which are safe as well as economical.

These objectives are fully accomplished and strengthened through laboratory and practical exercises. Conceptualization of theory explanation is achieved better by many relevant examples/problems.

Course contents:
Unit 1: Stress and Strain [10]

1.1 Direct stress and strain [6]
- Concept and stress and strain.
- Direct stress and direct strain – compressive and tensile.
- Determination of direct stresses and strains for uniform sections
- Determination of direct stresses and strains for stepped sections.
- Statement of Hooke’s law and definition of Young’s Modulus of Elasticity.
- Stress-strain diagram for tensile test on mild steel, explanation of elastic limit.
- Limit of proportionality, yield point, ultimate stress, and breaking stress – actual and nominal.
- Factor of safety.
- Applications of Hooke’s law to homogeneous and composite section.
- Temperature stresses and strains for homogenous and composite section.
- Definition of shear stress, shear strain and modulus of rigidity.
- Concept of single shear and double shear.
- Determination of shear stress and shear strain for homogeneous sections.
- Definition of linear strain, lateral strain and poisson’s ratio, volumetric strain, bulk modulus.
- Relationship between elastic constants

1.2 Compound Stress.
- Definitions of principal plane, principal stress and complementary shear stress.
- Effect of pure shear on diagonal planes.
- Solution of problems on compound stress by analytical method.
- Solution of problems on compound stress with the help of Mohr’s circle.

1.3 Strain Energy
- Concept of strain energy
- Resilience
- Proof resilience and modulus of resilience
- Strain energy for uniform homogeneous sections subjected to gradual loads.
- Strain energy for uniform homogeneous sections subjected to sudden and impact loads.

Unit 2 Bending Moments and Shear Forces

- **2.1** Beams and their types according to support conditions.
- **2.2** Sign convention
- **2.3** Relationship between load intensity, shear force and bending moment, explanation with SF and BM Diagrams.
- **2.4** Determination of bending moment and shear force in beams of different support and load systems:- (a) Simply supported beams (b) Cantilever beams (c) Overhanging beams and (a) Concentrated loads (b) Uniformly distributed loads (c) Combination of concentrated and uniformly distributed loads – By analytical method.
- **2.5** Drawing bending moment and shear force diagrams.
- **2.6** Determination of maximum bending moment, maximum shears force, point of contraflexure.

Unit 3 Moment of Inertia

- **3.1** Definition and importance about Moment of Inertia.
- **3.2** Moment of inertia of a rectangle and a circle about its center of gravity
- **3.3** Parallel axes theorem.
- **3.4** Determining the moment of inertia of (a) Common standard sections (b) Built up sections - by using the parallel axes theorm.
Unit 4 Stresses in Beams [12]

4.1 Bending Stresses in beams [8]
- Theory of simple bending
- Definition of moment of resistance, neutral axis, modulus of sections.
- Assumptions in simple theory of bending
- Relationship between Bending Stresses and Radius of Curvature
- Relationship between Moment and Radius of Curvature.
- Derivation and use of Engineer’s Theory of Bending Equation:- \(\sigma/\gamma = M/I = E/R \).
- Application of bending equation of homogeneous, built up and composite section.

4.2 Shearing Stresses in Beams [4]
- Shear stress formula and its application
- Calculation and distribution of shear stress in (a) Rectangular (b) I – section (c) T – section (d) Channel section (e) L – section and (f) H – section.

Unit 5 Torsion of Circular Shafts [8]

5.1 Definition of pure torsion
5.2 Relationship between power and torque.
5.3 Angle of twist and polar moment of inertia.
5.4 Derivation of Engineering Theory of Bending Equation
 \[T / J = \tau / R = G \theta / L \]
5.5 Use of above equation for solution of simple problems.

Text and Reference books
3. GH Ryder: Strength of Materials; ELBS with Macmillan.

Lab Exercises / Practical
1. Study of extensometer.
2. Study and operation of UTM.
3. Tensile test on mild steel specimen and plotting stress-strain curve.
4. Compression test on timber, cast iron and cement concrete, comparison
5. Charpy and Izod test to determine the toughness of cast iron and mild steel
6. Bending test on timber beams
7. Deflection test on beams
8. Torsion test on mild steel specimen.
9. Hardness test by Brinell and Rockwell tests.
Automobile Technology I
EG 2101 AE

Year: II
Semester: I

Total: 13 hours/week
Lecture: 4 hours/week
Tutorial: hours/week
Practical: 9 hours/week
Lab: hours/week

Course description:

This subject deals with history of automobile including system of transmission, clutch, gearbox, propeller shaft, final drive, axle, brake, suspension, chassis and frame of automobile vehicles.

Course objectives:

After the completing this course the students will be able to:

- Understand the fundamentals of automobile transmission and mechanism, axle and steering, brakes, suspension system, wheels and tires, chassis and frames.
- Understand the working principle and application of transmission and mechanism, steering, brakes, suspension system.
- Maintain, repair and care the various systems of automobile transmission and mechanism, axle and steering, brakes, suspension system, wheels and tires, chassis and frames.

Course contents:

UNIT 1: Short History of Automobile
1.1 Development of Automobile
1.2 List the nomenclature of different automobile aggregates and their processes
1.3 Classification of vehicles

UNIT 2: Transmission and Mechanism
2.1 Clutch
 2.1.1 Introduction
 2.1.2 Types of clutch
 2.1.3 Working principle of clutch
 2.1.4 Construction of clutch actuating mechanism
 2.1.5 Uses of fluid or hydraulic coupling
 2.1.6 Working principle of fluid clutch
 2.1.7 Faults and remedies of clutch

2.2. Gear box
 2.2.1. Introduction
2.2.2. Types of gearbox
2.2.3. Working principle of gearbox
2.2.4. Use and importance of gear shifting mechanism
2.2.5. Components of gear shifting mechanism
2.2.6. Operation of epicycle gear train in forward and reverse motion
2.2.7. Operation of torque converter
2.2.8. Operation of overdrive
2.2.9. Fault and remedies of gear box

2.3. Propeller shaft and Universal joint

2.3.1. Introduction to Propeller shaft and Universal joint
2.3.2. Purposes of Propeller shaft and Universal joint
2.3.3. Types of Propeller shaft and Universal joint
2.3.4. Drive mechanism from clutch to wheel in conventional cars and trucks
2.3.5. Construction of propeller shaft
 • Torque tube drive arrangement
 • Hutch kiss drives arrangement
2.3.6. Fault and remedies

2.4. Differential and Rear axle

2.4.1. Introduction
2.4.2. Types of axle
2.4.3. Use and importance of differential and final drive
2.4.4. Working principle of differential
2.4.5. Types of differential and axle housing
 • Banjo type
 • Spilt types
2.4.6. Function of axle and housing in different types of mounting axle
2.4.7. Fault and remedies

2.5. Front axle and steering

2.5.1. Front axle with different types of steering head
2.5.2. Different types steering linkages
2.5.3. Wheel alignment and its importance
2.5.4. Introduction to steering system
2.5.5. Working principle of steering system
2.5.6. Types of steering system
2.5.7. Working principle of different types of steering gear box
2.5.8. Use of different types of steering gear box
2.5.9. Operation of power steering
2.5.10. Fault and remedies

2.6. Brake System

2.6.1. Purpose of brakes in a motor vehicle
2.6.2. Function of braked mechanisms in a motor vehicle
2.6.3. Classification of brakes and their functions
2.6.4. Working principle of disc and drum brakes
2.6.5. Components and function of brake system
2.6.6. Fault and remedies of brake system

2.7. Suspension system

2.7.1. Introduction and use of suspension system
2.7.2. Classification of suspension system
2.7.3. Working principle and types of shock absorber
2.7.4. Fault and remedies of suspension system

2.7. Suspension system

2.7.1. Introduction and use of suspension system
2.7.2. Classification of suspension system
2.7.3. Working principle and types of shock absorber
2.7.4. Fault and remedies of suspension system

2.7. Suspension system

2.7.1. Introduction and use of suspension system
2.7.2. Classification of suspension system
2.7.3. Working principle and types of shock absorber
2.7.4. Fault and remedies of suspension system

2.8. Wheels and tyres

2.8.1. Introduction and features of wheel and tyres
2.8.2. Types of wheel and tyres
2.8.3. Advantages and disadvantages of radial ply and cross ply tyres
2.8.4. Rating of tyres
2.8.5. Importance of rotation of tyres
2.8.6. Fault and remedies of wheel and tyres

2.8. Wheels and tyres

2.8.1. Introduction and features of wheel and tyres
2.8.2. Types of wheel and tyres
2.8.3. Advantages and disadvantages of radial ply and cross ply tyres
2.8.4. Rating of tyres
2.8.5. Importance of rotation of tyres
2.8.6. Fault and remedies of wheel and tyres

2.8. Wheels and tyres

2.8.1. Introduction and features of wheel and tyres
2.8.2. Types of wheel and tyres
2.8.3. Advantages and disadvantages of radial ply and cross ply tyres
2.8.4. Rating of tyres
2.8.5. Importance of rotation of tyres
2.8.6. Fault and remedies of wheel and tyres

2.9. Chassis and frames

2.9.1. Introduction of chassis and frame
2.9.2. Different types of chassis and frames
2.9.3. Defects on chassis and frame

2.9. Chassis and frames

2.9.1. Introduction of chassis and frame
2.9.2. Different types of chassis and frames
2.9.3. Defects on chassis and frame

2.9. Chassis and frames

2.9.1. Introduction of chassis and frame
2.9.2. Different types of chassis and frames
2.9.3. Defects on chassis and frame

2.9. Chassis and frames

2.9.1. Introduction of chassis and frame
2.9.2. Different types of chassis and frames
2.9.3. Defects on chassis and frame

Reference books:

2. T.R. Banga, Nathu Singh, A text book of Automobile Engineering,
3. Frederick C. Nash, Kalman Banitz, Automotive Technology
4. K. M. Moeed, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
5. R.K. Mohanty, Automobile Engineering Volume I, Standard Book House, 1705A Naisarak, Delhi, 110006
6. P. S. Gill, A Text book og Automobile Engineering Volume I, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
7. Dr. Kripal Singh, Automobile Engineering Volume I, Standard Publishers Distributors, Naisarak, Post box 1066, Delhi, 110006
9. R.K. Singal, Automobile Engineering, S. K. Kataria and sons, New Delhi, 110002
10. G.B. S. Narang, Automobile Engineering, Khanna Publishers
11. Harbans Singh Reyat, The Automobile, S. Chand and Company Ltd., New Delhi
12. H. Gerscher, Technology for Automotive Trade Volume 1 & 2, GTZ
14. Bosch, Automotive Brake Systems, Society of Automotive Engineers (SAE), USA
Practical

1 Transmission System

1.1 Clutch
- Demonstrate the function of clutch system
- Identification of parts of clutch system and their function
- Repair and maintenance of different types of clutch
- Checking of defective parts and replace of it
- Trouble shooting in clutch system
- Safety precautions

1.2 Gearbox and transfer case
- Demonstrate the function of gear box.
- Identification of parts and their function.
- Repair and maintenance of different types of gearbox and transfer case
- Trouble shooting in gearbox and transfer case
- Safety precautions

1.3 Propeller shaft, differential and real axle
- Demonstrate the function of propeller shaft, differential and rear axle
- Identification of parts and their function.
- Repair and maintenance of propeller shaft, differential and real axle
- Setting and testing of differential
- Trouble shooting of propeller shaft, differential and real axle
- Safety precautions

2. Front Axle and Steering
- Demonstration and function of steering system
- Dismantling the parts of steering system systematically
- Identification of parts of steering system and their functions
- Checking and replacement of defective parts
- Assembling and testing of parts
- Alignment of steering geometry and side slip
- Trouble shooting of steering and front axle.
- Safety precautions

3. Suspension System
- Demonstration and function of suspension system
- Identification of parts and their function
- Function of suspension system
- Trouble shooting of suspension system
- Safety precautions

4. Brake System
- Repair and maintenance of different types of brake system
• Dismantling the parts of brake system and their function
• Checking and replacement defective parts
• Assembling and testing of parts and system
• Adjusting of brake
• Bleeding system
• Brake Testing
• Trouble shooting of brake system
• Safety precautions

5. Wheels and Tires
• Demonstration and functions of wheels and tires
• Checking defective tire and their repair and replacement
• Fitting of tire to the vehicles
• Checking tyre pressure
• Wheel rotation in vehicle
• Wheel balancing
• Trouble shooting
• Safety precautions

Metrology and Measurement
EG 2102 AE

Total: 3 hours/week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hour/week

Year: II
Semester: I

Course description:
This course provides knowledge and skills on machine design and manufacturing process. It deals mainly with measurement and inspection of quantities which are expressed in linear and angular terms. This course also deals with some mechanical measurements of parameters like temperature and pressure.

Course objectives:
After the completing this course the students will be able to:

- Understand the scope and fields of Metrology
- Familiar with concept on Standards, Standardization and Standardizing Organizations.
- Understand basic concept, principles and applications of different types of linear, angular, taper measurements
- Acquire basic knowledge on importance of standards
- Understand the principles of limits, fits and tolerances
- Understand the surface finish.
- Explain basics of Screw Thread and Gear Measurement
- Acquire basic knowledge on temperature and pressure measurement

Course contents:

Unit 1: Introduction to Metrology (2 hrs)
1.1. Concept of metrology and its scope
1.2. General Metrological terms: Accuracy, Precision, Error, Uncertainty, Repeatability, Reproducibility, Sensitivity, Resolution, Calibration, Magnification, Backlash, Range, Span, Traceability, Drift, Response, Stability
1.3. Methods of Measurement
1.4. Types of error in measurement

Unit 2: Standards, Standardization and Standardizing organizations (2 hrs)
2.1. Definition of Standards
2.2. Classification of Standards
2.3. Line Standards and End Standards
2.4. Introduction to National and International Organizations for Standardization
Unit 3: Measuring Instruments (Linear, Angular, Taper and Surface) (4 hrs)
 3.1. Classification of Measuring Instruments
 3.2. Construction and Principle of precision and non-precision instruments
 3.3. Applications and limitations

Unit 4: Comparators (4 hrs)
 4.1. Introduction
 4.2. Classification
 4.3. Construction and Principle of Mechanical and Electrical comparators
 4.4. Applications and limitations

Unit 5: Screw Thread Measurement (4 hours)
 5.1. Introduction
 5.2. Classification of threads
 5.3. Elements of screw thread
 5.4. Thread measuring Instruments

Unit 6: Gear Measurements (3 hours)
 6.1. Introduction
 6.2. Types of Gear
 6.3. Spur Gear Terminology
 6.4. Gear Measuring Instruments

Unit 7: Limits, Fits and Tolerances (7 hours)
 7.1. Introduction
 7.2. Terms: Tolerance, Allowance, Fit, Basic Size, Actual size, nominal size
 7.3. Classification of fits
 7.4. Hole basis and Shaft Basis System
 7.5. Interchangeability
 7.6. Gauges
 7.7. ISO system of Limits, Fits and Tolerances
 7.8. Geometrical tolerances (Form, Profile, Orientation, Location, Run out)

Unit 8: Surface Finish (2 hours)
 8.1. Introduction
 8.2. Concept of surface finish
 8.3. Roughness, waviness, Form error, sampling length, Lay Direction
 8.4. Effect of surface finish on machine performance
 8.5. Surface finish evaluating parameters
 - Root mean square value, R_{rms}
 - Average Roughness, R_a
 - Ten point height of irregularities, R_z
 - Bearing area ratio t_p,
Unit 9: Mechanical Measurements (2 hours)

9.1. Introduction
9.2. Units of temperature and Pressure
9.3. Temperature Measuring Instruments
9.4. Pressure Measuring Instruments

References:

2. Manohar Mahajan, A Text book of Metrology, Dhanapat Rai & Co., (P) Ltd., Delhi,

Laboratory works:

1. Familiarization with linear, angular, taper, surface, surface measurement
2. Familiarization with gauges
3. Familiarization with Thread and Gear Measuring Instruments
4. Familiarization with temperature and pressure measuring instruments

Fourth Semester
Subjects:

1. EG 2201 CT Computer Application
2. EG 2206 SH Social Studies
3. EG 2202 ME Thermal Engineering II
4. EG 2207 ME Industrial Management
5. EG 2201 AE Automotive Technology II
6. EG 2202 AE Machine Elements and Mechanism
7. Elective (one of the following)
 a. EG 2203 AE Vehicle Denting and Painting
 b. EG 2203 AE Motor cycle Repair & Maintenance
 c. EG 2203 AE Automobile Air Conditioning
Computer Applications
EG 2201 CT

Year: II
Semester: II

Total: 4 hours /week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: 2 hours/week
Lab: hours/week

Course description:

This course deals with the history of computer development, hardware components, Operating systems, Software applications, Computer networks and Internet. It also imparts knowledge and skills on classifications of computers, its architecture and software application installations, Peripheral devices installation, computer networks, internet and their use in various purposes.

Course objectives:

On completion of this course the students will be able to:
- Understand basic architecture of Computer.
- Identify major components of computer and their role.
- Understand different Operating Systems like MS-DOS, Windows etc.
- Use different Software applications.
- Understand basic networking and Internet concept.

Course contents:

Unit 1 Introduction to Computers [2]
1.1 History of computers
1.2 Generation and type of computers
1.3 Computer hardware and software

Unit 2 Hardware Components [6]
2.1 Major blocks of a digital computer
2.2 Input devices like keyboard, mouse, joystick, scanner, light pen etc.
2.3 Output devices like monitor, printer, plotter, sound card, speaker etc.
2.4 Central Processing Unit
2.5 Memory Unit: RAM, ROM, PROM, EPROM
2.6 Auxiliary storage devices:
 - Magnetic storage like floppy disk, hard disk, magnetic tape etc.
 - Optical storage like CD-ROM, DVD
 - Pen drive, flash memory card etc.

Unit 3 Introduction to Operating System Software [6]
3.1 Importance and use of operating systems (OS)
3.2 Type of OS: MS-DOS, Windows, Unix, Linux
3.3 File management, device management and memory management by OS
3.4 MS-DOS system files: io.sys, msdos.sys, command.com, config.sys, autoexec.bat
3.5 MS-DOS internal and external commands
3.6 Windows Operating System: Graphical User Interface and windows environment, file/folder management
3.7 Linux: GNU open source operating system

Unit 4 Application Packages

4.1 Text Editors (edit in DOS, notepad in Windows, vi editor in Linux
4.2 Word Processing Package: Microsoft Word
4.3 Spreadsheet Package: Microsoft Excel
 - Entering data
 - Using formula
 - Basic calculations
 - Financial calculations
 - Charts
4.4 Concept of Database management system
4.5 Database management package: Microsoft Access
4.6 Presentation Package: Microsoft PowerPoint

Unit 5 Utility Programs

5.1 Computer virus and its removal (antivirus programs)
5.2 Multimedia: Audio, Video and Graphics

Unit 6 Networks and Internet

6.1 Brief Introduction of LAN, MAN, WAN
6.2 Topologies: Bus, Ring and Star
6.3 Hub, Switch, Modem
6.4 Network Cabling
6.5 NIC
6.6 Network OS
6.7 Client and server concept
6.8 File and print sharing
6.9 Email/Internet
 - World Wide Web (WWW)
 - ISP
 - Search Engines
 - Internet Client: Web browsers like Internet Explorer, Netscape Navigator, Mozilla Firefox etc.,
 - Email clients like Outlook Express, Netscape Mail etc.
Practical Exercise

1. Identification of major components of computer and familiarization with keyboard and mouse. (1 session)
2. Internal and External DOS commands (1 session)
3. Windows Graphical User Interface and file/folder management (1 session)
4. Microsoft Word (2 sessions)
 a. Editing text
 b. Formatting document
 c. Creating tables
 d. Creating graphics and word art
5. Microsoft Excel (3 sessions)
 a. Editing worksheet
 b. Data formatting and manipulation
 c. Analysis of data (use of functions for calculation)
 d. Charts/Data presentation
 e. Import/Export data
6. Microsoft Access (2 sessions)
 a. Creating and manipulating data tables
 b. Query
 c. Forms/Reports
7. Using Multimedia and Internet/Email (1 session)
8. Creating effective presentation using Microsoft PowerPoint (1 session)
9. Project Work (3 sessions)

The students will be assigned (individually or in group) a project work based on Microsoft Excel or Access. The students are required to prepare a short report in MS Word and prepare a short presentation in PowerPoint.

Text books:
1. Rajaraman, “*Fundamentals of Computers*”, Prentice-Hall of India

Reference books:
1. B Ram, “*Computer Fundamentals*”, Willey Eastern Publishers
2. S Saxena, “*A First Course in Computers*”, Vikash Publishing
3. Winn Rosch, “*Hardware Bible*”
4. Noel Kalicharan, “*Introduction to computer Studies*”, Cambridge Low Price Edition
5. P.K Sinha, “*Computer Fundamentals*”
वर्ष : दोस्रो
सेमेस्टर : दोस्रो
जम्मा : २ घण्टा / हंगे
प्रवचन : २ घण्टा / हंगे
विशेष : २ घण्टा / हंगे
प्रयोगात्मक : २ घण्टा / हंगे
प्रयोगशाला : २ घण्टा / हंगे

पाठ्यक्रमको परिचय

सामाजिक अध्ययन विषयको पाठ्यक्रमको मुख उद्देश्य नेपालको वस्तुस्थिति विशेषता, भौगोलिक जानकारी संक्षेपमा दिइने प्रारंभिक विद्यालयको नेपालको विविध पक्षावट परिचित गरेउन हो। सामाजिक अध्ययनको पाठ्यक्रम डिप्लोमा इन्जिनियरिङ्ग तहमा पहाड़ीविहारको लागि इन्हाइम, संस्कृति, भूगोल, अर्थशास्त्र, राजनीतिविद्या, समाजशास्त्र, मानवशास्त्र, जनसंख्या विश्वा, वातावरण विश्वा आदिका विषयवस्तुको एकीकृत गरी निर्माण गरिएको छ।

पाठ्यक्रमको उद्देश्य

यस पाठ्यक्रमको अध्ययनपछि महत्वपूर्ण तरीय प्रारंभिक विद्यालयको निम्नलिखित विषयमा सभ्य हुनेछन्:

1) विश्वविद्यालयमा नेपालको विविध परिचय दिन।
2) नेपाल शास्त्रको उपयोगी जानकारी दिन।
3) सामाजिक विज्ञान-मानव र समाजको सामाजिक जानकारी दिन।
4) नेपालको आधिक विद्यााँको विशेषता-सहित कृषि, व्यापार, उद्योग, यातायात, समर्थनको सामाजिक परिचय दिन।
5) नेपालको छिमेको तथा मिराराट्बो भारत र चीनसम्झको समवेत्यको छोटकरिमा परिचय तथा असलन पराट्ब नीति, समुद्र राष्ट्रसँग, साकारात्मक विश्व जानकारी गरेउन।
6) नेपालको शासन व्यवस्थाको प्रमुख अधिन हारू र विविध, विकेन्द्रीकरणको सामाजिक परिचय दिन।
7) सामाजिक नर्ता सामाजिक परवर्तनसम्मको जानकारी दिन।
8) वातावरण, सामाजिक सेवा र सामुदायिक विकास, सामाजिक संरक्षण, जनसंख्या विश्वासम्मको सामाजिक जानकारी दिन।

<table>
<thead>
<tr>
<th>एकाडाइ</th>
<th>पाठ्यांश विवरण</th>
<th>पाठ घण्टा</th>
</tr>
</thead>
<tbody>
<tr>
<td>एकाडाइ 1.</td>
<td>सामाजिक अध्ययन तथा सामाजिक विज्ञानको परिचय</td>
<td>४</td>
</tr>
<tr>
<td>क) सामाजिक अध्ययनको अंग, क्षेत्र, महत्त्व</td>
<td>२</td>
<td></td>
</tr>
<tr>
<td>ख) सामाजिक अध्ययनको सामाजिक विज्ञानसम्म समवेत्य</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>ग) सामाजिक अध्ययनको अंग, विविधित समवेत्य</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>घ) सामाजिक अध्ययन र सामाजिक विज्ञानीय भिन्नता</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>ङ) समाजशास्त्र र ग्रामीण समाजशास्त्रको परिचय</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>क) समाजशास्त्रको प्रक्ति र वैज्ञानिक पद्धति</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>छ) सामाजिक विज्ञान र भौगोलिक विज्ञानीयको अंतर</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>ज) विज्ञान र इन्जिनियरिङ्ग</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>क) विज्ञान र प्रारंभिक</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>ज) विज्ञान र धर्मम</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>झ) विज्ञान र समाज</td>
<td>१</td>
<td></td>
</tr>
<tr>
<td>एकाड.</td>
<td>पाद्यप्रणाली विवरण</td>
<td>भाग गठन</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>एकाड. 2. मानव र समाज</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>क) समाज, संस्कृति र व्यक्ति, बांटी, परम्परा र रेखाघर</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ख) जाति, भाषा, धर्म, पेशा, राजनैतिक र राजधानी</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ग) समाजमा महिलाहरूको स्थिति</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>एकाड. 3. सामाजिक तथा सामान्य विवरण</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>a) सामाजिक तथा सामान्य परिवर्तनका अर्थ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b) सामाजिक तथा सामान्य परिवर्तनका निदानमहत्त्व</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c) सामाजिक र सामान्य परिवर्तनका कारक तत्वहरू</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d) आयोजकीय पर्याप्तता र सामाजिक परिवर्तन</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e) ग्रामीण सामाजिक जनजीवनमा प्रभाव</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>f) आयोजकीय र ग्रामीण समाजमा विशेषता</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>एकाड. 4. बालबिचार र प्रवृत्ति</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a) बालबिचार र प्रवृत्ति परिवर्तनको अर्थ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b) बालबिचार परिवर्तनको आवश्यकता र महत्त्व</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>एकाड. 5. सामाजिक सेवा र सामान्य विकास</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>a) सामाजिक विकास परिवर्तनको अर्थ र उद्देश्य</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b) सामाजिक विकास कार्यक्रम</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g) जनसाहब भागिनता र सामाजिक विकास</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>h) सामाजिक सेवाको अर्थ, क्षेत्र र उद्देश्य</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>i) सामाजिक कार्यरत्नको अर्थ, प्रकार, गण र भूमिका</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>एकाड. 6. सामाजिक अनुस्थान</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>a) परिभाषा, प्रकृति, उद्देश्य र प्रकार</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>b) सामाजिक अनुस्थानको प्रकृति</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>c) सामाजिक अनुस्थानका प्रमुख चरण</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>एकाड. 7. हमास बोतहक</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>a) मानवणिकी</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b) जनस्रोत</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g) भूमि</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>घ) वनसम्पदा</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>च) सीमाणिक</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>छ) वाशनात्मक</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>एकाड. 8. नेपाल शासकी उत्तिस्तिक</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>एकाड. 9. विचारमानविश्वास नेपाल</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>एकाड. 10. आधिक अवधा</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>a) कृषि, व्यापार, उद्योग, यातायात र सञ्चारको महत्त्व</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b) आधिक व्यवस्थाको विशेषता</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c) विभिन्न अवधारणा, विशेषतावाद अवधारणा, साफ्रा अवधारणा, योजनाबाट विकास</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>एकाड. 11. परमार्थनीति</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>a) नेपालको असलको परमार्थनीतिको अर्थ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b) नेपालको परमार्थनीतिका विशेषता</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>एकाउँ</td>
<td>पादयथा विवरण</td>
<td>पाठ घटना</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>घ) नेपाल चीन सम्बन्ध</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>झ) सञ्चार राष्ट्रिय र नेपाल</td>
<td></td>
<td></td>
</tr>
<tr>
<td>च) सार्क र नेपाल</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>एकाउँ १२. शासन व्यवस्था</th>
<th>पाठ घटना</th>
</tr>
</thead>
<tbody>
<tr>
<td>क) व्यवस्थापिका</td>
<td>0.5</td>
</tr>
<tr>
<td>झ) शासन व्यवस्था मा, अन्तर्गत सामुदायिक छोटो परिचय</td>
<td>0.5</td>
</tr>
<tr>
<td>झ) नेपाल अधिराज्यको सामुदायिक, २०४७, को विशेषताहरू</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>एकाउँ १३. जनसङ्ख्या शिक्षा</th>
<th>पाठ घटना</th>
</tr>
</thead>
<tbody>
<tr>
<td>क) जनसङ्ख्या शिक्षा को परिचय</td>
<td>2</td>
</tr>
<tr>
<td>ख) जनसङ्ख्या शिक्षा को उद्धरण</td>
<td>1</td>
</tr>
<tr>
<td>ग) जनसङ्ख्या बढी र निविदण</td>
<td>1</td>
</tr>
</tbody>
</table>

पाठपुस्तक

1. सामाजिक अध्ययन, सिद्धिश्रवर्मन श्रेणी, डा. राजेन्द्रप्रसाद अधिकारी, साविकी श्रेणी, अशोक, प्रकाशन, काठमाडौं।

सन्दर्भ सामग्री:

1. नेपाल अधिराज्यको सामुदायिक, २०४५, कानून, व्यावस्था र व्यवस्था मा, कानून किताब, व्यवस्था सम्बन्ध, काठमाडौं, २०७६।
2. नेपाल अधिराज्यको सामुदायिक, २०४७: एक रिपोर्ट, विमान, विदेश, राशियाँ, राष्ट्रीय प्रकाशन, काठमाडौं, २०५८।
3. नेपाल परिचय, सिद्धिश्रवर्मन श्रेणी, प्रा. श्यामकुण्ड जोशी, साविकी श्रेणी, अशोक, प्रकाशन, काठमाडौं, २०६९।
4. नेपाल अधिराज्य, नेपाल परिचय, नेपाल राष्ट्रीय प्रकाशन, काठमाडौं, २०५५।
5. नेपाली वृत्त श्यामकुण्ड, नेपाल राष्ट्रीय प्रकाशन, काठमाडौं, २०५२।
6. नेपाली साहित्य र जनकांड दोलन, साविकी श्रेणी, अशोक, प्रकाशन, काठमाडौं, २०६३।
7. जनसङ्ख्या नेपाल परिचय, साविकी श्रेणी, सिद्धिश्रवर्मन श्रेणी, परिचय, नेपाल प्रकाशन, काठमाडौं, २०५०, २०५८ (भेद्रो संक्षेप)।
8. वाणिज्य विशेष बीत, साविकी श्रेणी, अशोक, संरक्षण कार्यान्तर कार्यान्तर आयोजना, काठमाडौं, २०५०।
9. महावर्गिल राजनीतिक श्यामकुण्ड, सिद्धिश्रवर्मन श्रेणी, अशोक, प्रकाशन, काठमाडौं, २०५५, २०५८, २०६६।
10. मुख्य, वैज्ञानिक, राजस्व, अन्तर्गत वेदोपर लगायत, नेपाल काय र राजस्व कालमा, विशेष विश्लेषण, काठमाडौं, २०७१।
11. जनसङ्ख्या र विवरण को परिचय, सिद्धिश्रवर्मन श्रेणी, परिचय, काठमाडौं, २०५०, २०५८ (भेद्रो संक्षेप)।
12. सामाजिक अध्ययन (हेल्फ साइन्स), सिद्धिश्रवर्मन श्रेणी, साविकी श्रेणी, अशोक, प्रकाशन, काठमाडौं, २०६७।
Thermal Engineering II

EG 2202 ME

Year: II
Semester: II

Total: 5 hours /week
Lecture: 3 hours/week
Tutorial: 1 hours/week
Practical: hours/week
Lab: 1 hours/week

Course description:

This course deals with the application of laws of thermodynamics, types and functions of heat engines, air compressors and refrigeration and air-conditioning machines. It also deals with the characteristics of fuel & its calorific values.

Course objectives:

After completing this course the students will be able to:
- Describe the uses of heat engines, air compressors and RAC machines
- Explain the operation of various aggregates, components of heat engines, air compressors and RAC machines
- Check the condition and carryout servicing of heat engines, air compressors and RAC machines and their components.

Course contents:

Unit 1: Combustion [6]
 1.1 Basic chemistry
 1.2 Fuel: types, properties and uses
 1.3 Heating value of fuels
 1.4 Combustion equations
 1.5 Air-fuel mixture ratio: lean, stoichiometric and rich mixtures

Unit 2: Heat engine cycles [8]
 2.1 Constant volume cycle: application and performance
 2.2 Constant pressure cycle: application and performance
 2.3 Mixed cycle: application and performance
 2.4 Related problem on cycles

Unit 3: Internal combustion engine [16]
 3.1 Introduction
 3.2 Engine classification
 3.3 Engine components and parts: identification functions and care
 3.4 Cooling system: types, main parts, operation and care
 3.5 Lubricating system: types, main parts, operation, and care
 3.6 Fuel system: types, main parts, operation, and care
3.7 Ignition system: types, main parts, operation, and care
3.8 Engine emissions and legal requirements

Unit 4: Gas Turbine cycles
4.1 The Brayton cycles: operation and performance
4.2 Deviation of actual gas turbine cycles from idealized cycles
4.3 Brayton cycle with inter-cooling, reheating, and regeneration
4.4 Related problems

Unit 5: Air compressors
5.1 Classification of air compressors
5.2 Reciprocating compressors: construction, operation, and care
5.3 Rotary compressors: construction, operation, and care

Unit 6: Refrigeration cycle
6.1 Introduction to evaporative refrigeration and ice refrigeration
6.2 Vapour compression cycles: application and performance
6.3 Vapour-absorption cycles: application and performance
6.4 The pressure-enthalpy diagram
6.5 Main components of domestic refrigerator: construction, operation and care
6.6 Cold storage and installation

Suggestion for instruction:
1. Use illustrative teaching materials like model, charts, and overhead transparencies to visualize the complex parts.
2. Show videos in the class in related topics.
3. Students are asked to assemble, dismantle and test the parts in the practical classes.
4. Use of appropriate tools is emphasized to test the condition of parts.

Reference:
5. Domkundwar & Arora, A course in Refrigeration and air conditioning, Dhanpat Rai and sons, 1682, Nai Sarak, Delhi – 110006, India

Lab/Practical:
1. Determine calorific value of fuel (Petrol, Diesel)
2. Study performance of IC engine
3. Study performance of air compressor
4. Study performance vapor compression refrigeration system
5. Study performance vapor absorption refrigeration system
6. Perform engine emission test
7. Visit to local cold storage and ice factory.
Industrial Management
EG 2207 ME

Year: II Lecture: 3 hours/week
Semester: II Tutorial: hours/week
 Practical: hours/week
 Lab: hours/week

Total: 3 hours /week

Course description:
This course deals with the fundamental concepts of organization, management, leadership and supervisory, production management, marketing of products or services, materials management and inventory control, engineering economics and capital management required for supervisors and first line managers engaged in industrial activities.

Course objectives:
After completing the course the student will be able to:
• Describe the concept of organization and management
• Understand the basic theories of management
• Explain the various leadership behaviors of a manager
• Explain the concept of production management and production control
• Understand the process of marketing
• Demonstrate the understanding of materials management
• Apply the principles of engineering economics and capital management

Course contents:

Unit 1 Introduction to Organization and Management [18]

1.1 Definition of an Organization
1.2 Organization as an open system
1.3 Evolution of organizations
1.4 Formal and informal organization
1.5 Industrial organization
 ▪ Types of ownership (forms of business organization): private sector, cooperative sector, public sector
 ▪ Individual ownership: introduction, advantages and disadvantages
 ▪ Partnership organization: introduction, types, advantages, disadvantages
 ▪ Joint stock company: introduction, types, advantages, disadvantages
 ▪ Cooperative organizations: basic concept, advantages, disadvantages
 ▪ State enterprises and undertakings: departmental undertakings, public corporation, government company
 ▪ Difference between private sector and public sectors enterprises
1.6 Organization structure and its types
 - Introduction of organization structure
 - Line organization
 - Line and staff organization
 - Functional organization

1.7 Departmentation: basic concept, basis of departmentation

1.8 Management
 - Introduction and definitions of management
 - Characteristics of management
 - Basic levels of management in industry: top level, middle level and lowest or supervisory level of management
 - Basic responsibilities at different level of management
 - Managerial skills for different level of management: technical skills, human relation skills/interpersonal skills (includes communication skills, motivating skills and leadership skills), conceptual skills (includes decision making and organizational skills)

1.9 Processes and functions of management: planning, organizing, staffing, directing, motivating, controlling, leading, decision making and communication

1.10 Evolution of management theory
 - Handicraft system
 - Factory system
 - Stages of evolution of management: classical theory, neo-classical theory and modern management theories
 - Scientific management theory and its principles
 - Administrative management theory (Henri Fayol and others) and its 14 principles
 - Bureaucracy theory
 - Human relations and behavior science theories
 - The decision theory of management
 - Management science theory
 - Systems theory of management
 - Contingency theory of management

Unit 2 Leadership and Supervisory

[4]

2.1 Introduction and definition of leadership
2.2 Basic functions of leadership
2.3 Qualities of leadership
2.4 Difference between management and leadership
2.5 Theories of leadership
2.6 Leadership styles
2.7 Definition of supervision
2.8 Duties of a foreman
2.9 Essential qualities of a foreman
Unit 3 Production Management

3.1 Introduction to production management
3.2 Functional subsystems of organization: Marketing, Production, Finance, Personnel
3.3 Production: system concept of production of an organization (inputs, transformation processes, outputs)
3.4 Introduction to various techniques used in production system
 - Forecasting
 - Plant location and layout
 - Product design and analysis
 - Production planning and control
 - Maintenance management
 - Feedback and control techniques (inventory control and quality control)
3.5 Finance and capital management
 - Sources of finance for investment
 - Concept of assets and liabilities
 - Concept of fixed capital and selection of machine tools
 - Concept of working capital and calculation
 - Accounting (definition, objectives, and importance of accounting, concept of debit and credit, concept of journal and ledger, profit and loss account, balance sheet)
3.6 Personnel function
 - Introduction and its importance in industrial organization as a support function
 - Activities of personnel function in brief (next to this semester, a course on personnel management is proposed for detail study).
3.7 Productivity improvement techniques: definition, a brief discussion on human resource based productivity improvement and machines/technology based productivity improvement techniques
3.8 Concept of time and motion study
3.9 Role of bottom/lowest level management in production management

Unit 4 Marketing of Product or Services

4.1 Definitions of market and marketing
4.2 Modern concepts of marketing: customer orientation and customer satisfaction
4.3 Functions of marketing: buying, selling, transport, storage, standardization & grading, financing, risk bearing, market information
4.4 Concept of marketing mix: product, price, place, promotion
4.5 Understanding consumer behavior
4.6 Understanding the concept of distribution channels
4.7 Sales promotion
4.8 Advertising
4.9 Trade exhibitions
4.10 Pricing of goods or services
4.11 Role of bottom level management in marketing process

Unit 5 Materials Management and Inventory Control

5.1 Definition of materials management
5.2 Functions of material management: material planning, store/stock control, purchasing, receiving and issue of materials, simplification/standardizing/coding of materials, transportation and handling, value engineering and value analysis, disposal of scrap, surplus and obsolete materials.
5.3 Store management: meaning, objectives, function of store
5.4 Definition of inventory control
5.5 Inventory level
5.6 Economic lot size
5.7 Duties and responsibilities of store keeper

Unit 6 Engineering Economics and Capital Management

6.1 Engineering economics: introduction
6.2 Importance of manufacturing industry in the economy of the country
6.3 Estimating and costing
6.4 Classification of costs
6.5 Capital Management
6.6 Basic concept of assets and liability
6.7 fixed capital and selection of machine and tools
6.8 working capital and calculation
6.9 Accounting: objectives and importance of accounting, debit and credit, journal and ledger, profit and loss account, balance sheet
Suggestions for Instructions:

1. Lectors by teacher
2. Presentations by students
3. Guest speakers on any relevant industrial management topics.
4. Industrial visits on existing management practices
5. Relevant case studies on industrial management successes
6. Assignments to broaden the horizon of management skills of students

Note: the above given topics and sub topics are basic guidelines to drive the course for initial stage. The course improvement is a continuous process based on the feedback of the industries. Therefore related authorities are recommended to review the course continuously to address the future needs more effectively.

References

Automobile Technology II
EG 2201 AE

Year: II
Semester: II

Total: 15 hours/week
Lecture: 4 hours/week
Tutorial: hours/week
Practical: 11 hours/week
Lab: hours/week

Course description:
This course includes automobile engine, cooling and lubrication system, fuels, electricity, magnetism, battery, ignition system, stator, generator, regulators and automobile accessories.

Course objectives:
After the completing this course the students will be able to:
- Understand engine and their types
- Explain working principle of engine
- Understand fuel, lubrication, cooling and their properties
- Describe construction and application of generator, alternator and Starter motor, battery and ignition system

Course contents:

Unit 1: Engine Fundamentals 14 hrs
1.1 Engine
 1.1.1. Introduction to engine
 1.1.2. Classification of engine
 1.1.3. Spark ignition (SI) and Compression Ignition (CI) engine
 1.1.4. Working principle of two stroke cycle and four stroke cycle engine
 1.1.5. Use and importance of engine components
 1.1.6. Valve and valve mechanism and valve timing diagram
 1.1.7. Fault and remedies

1.2 Engine Terminology 4 hrs
 1.2.1. Bore
 1.2.2. Stroke
 1.2.3. TDC/BDC
 1.2.4. Engine Capacity
 1.2.5. Mean indicated pressure
 1.2.6. Indicated power
 1.2.7. Indicated efficiency
 1.2.8. Specific indicated fuel consumption
Unit 2: Fuel
2.1. Introduction and types of fuel
2.2. Fuel structure
2.3. Properties of liquid fuel
 • Volatility of fuel
 • Flash point
 • Ignition temperature
 • Calorific value
 • Octane number
 • Cetane number
 • Antiknock value and ignitability of fuel
 • Tetra ethyl-lead content

Unit 3: Petrol Fuel system
3.1. Introduction and types of petrol fuel system
3.2. Purpose, importance and uses of petrol fuel system
3.3. Working principle and function of fuel system
3.4. Components of fuel system: tank, pump, filter, carburetor, air cleaner
3.5. Working principle of carburetor
3.6. Types and circuits of carburetor
3.7. Fault and remedies

Unit 4: Lubrication System
4.1. Lubricants, its types functions and properties
4.2. Introduction to lubrication system
4.3. Importance, purpose and uses of lubrication system
4.4. Working principle and function of lubrication system
4.5. Types of lubrication system
4.6. Parts and components of lubrication system
4.7. Fault and remedies

Unit 5: Cooling System
5.1. Coolants, its types and properties
5.2. Introduction to cooling system
5.3. Importance, purpose and uses of cooling system
5.4. Working principle of cooling system
5.5. Components of cooling system
5.6. Fault and remedies

Unit 6: Basic Measurement
6.1. Basic and derive units of measurement.
6.2. Uses and importance of measuring instrument
6.3. Introduction to measuring instrument: calipers, vernier caliper. Micrometer, dial gauge, feeler gauge, bore gauge
Unit 7: Electricity and Magnetism 2 hrs

7.1. Conductors, insulators, semi-conductors and their material
7.2. Ohm's law, electromotive force, potential difference and voltage drop
7.3. Series and parallel circuit
7.4. Effects of electric current
7.5. Magnetism, first law of magnetism

Unit 8: Automobile Battery 3 hrs

8.1. Introduction
8.2. Construction of battery
8.3. Function of lead acid battery
8.4. Battery capacity
8.5. Charging and discharging process of battery
8.6. Faults and remedies

Unit 9: Ignition system 6 hrs

9.1. Introduction, purpose and uses of ignition system,
9.2. Types of ignition system, conventional and electronic ignition system
9.3. Working principle of ignition system
9.4. Components of ignition system
9.5. Working principle and function of battery coil ignition system
9.6. Ignition timing and firing order
9.7. Introduction and types of advance mechanism
9.8. Introduction to magneto ignition system
9.9. Working principle of magneto ignition system
9.10. Merits and demerits of coil ignition and magneto ignition system
9.11. Transistorized ignition system
9.12. Faults and remedies

Unit 10: Automobile starting system 5 hrs

10.1. Introduction and function of starting system
10.2. Working principle of starter motor
10.3. Function of main components of starting system
10.4. Types of starter motors
10.5. Faults and remedies

Unit 11: Automobile Charging System 6 hrs

11.1. Introduction to charging system
11.2. Function of generators
11.3. Working principle of generator and alternator
11.4. Function of different parts of generator and alternator
11.5. Differentiate between generator and alternator
11.6. Importance and function of cutout and regulator
11.7. Faults and remedies
Unit 12: Accessories in Automobile 2 hrs

12.1. Electrical fuel pump
12.2. Gauges indicators
12.3. Window wiper
12.4. Air conditioner
12.5. Car audio
12.6. Other Electric devices

Reference books:

3. T.R. Banga, Nathu Singh, A text book of Automobile Engineering,
4. Frederick C. Nash, Kalman Banitz, Automotive Technology
5. K. M. Moeed, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
7. P. S. Gill, A Text book og Automobile Engineering Volume I & II, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
8. Dr. Kripal Singh, Automobile Engineering Volume I & II, Standard Publishers Distributors, Naisarak, Post box 1066, Delhi, 110006
10. R.K. Singal, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
11. G.B. S. Narang, Automobile Engineering, Khanna Publishers
12. DrHarbans Singh Reyat, The Automobile, S. Chand and Company Ltd., New Dilhi
15. H. Gerscher, Technology for Automotive Trade Volume 1 & 2, GTZ
Practical

1. Petrol Engine
 - Demonstrate the working Principle of spark ignition system
 - Dismantling of engine
 - Identification of various components and part of engine and their function
 - Identify and maintenance of lubrication and cooling systems
 - Checking and replacement of defective parts
 - Measurements of engine components
 - Assembling of engine
 - Trouble shooting
 - Safety precautions

2. Carburetor and Fuel System
 - Demonstration and working principle of carburetor
 - Identification of parts and their function
 - Servicing components of fuel system
 - Dismantling of carburetor
 - Checking and replacement of defective parts.
 - Assembling and testing of parts
 - Trouble shooting
 - Safety and precautions

3. Measurement of Basic Electricity
 - Measure Voltage, Current, Resistance, Frequency
 - Use of Multimeter
 - Use of oscilloscope and function generator

4. Battery
 - Test equipment of battery
 - Handling battery-charging equipment
 - Battery charging rating
 - Battery charging connection
 - Use of hydrometer, cell tester
 - Servicing of battery
 - Safety precautions

5. Ignition system
 - Identification of parts, its function and working principle
 - Testing and setting of ignition system of its components
 - Ignition switch
 - Ignition coil
 - Condenser
 - Spark plug
 - High tension wire insulator test
 - Advance mechanism
o Use of coil tester
o Use of dwell angle tester
o Use of filler gauge
o Use of test lamp
o Use of stroboscope lamp
o Set ignition timing
o Ignition system trouble shooting and maintenance:
o Short circuit test of wiring
o Loose connection of battery, fuse, connectors, etc.
o Lubrication moving parts of distributor assembly
o Setting of gap and cleaning of C.B. points
o Setting gap and cleaning of spark plug

- Safety precautions

6. Charging System
- Charging system-wiring layout
- Dismantling, identification of parts and assembling of generator and alternator
- Identification of cutout and regulator
- Testing of generator on test bench and on vehicle
- Checking carbon brush, spring tension and replacing
- Checking bush and bearing lubricating and replacing
- Checking slip ring, commentator turning and undercutting the segment
- Checking regulator and cut out,
- Testing of Stator field winding
- Testing of Rotor, rectifier assembly and armature winding
- Checking of connections of generators and alternator
- Trouble shooting of charging system
- Safety precautions

7. Starting System
- Wiring diagram of starting system
- Dismantling, identification of parts and assembling of starting motor
- Checking and replacement of carbon brush and spring
- Checking bush and bearing, Lubricating, replacing
- Checking Field and armature winding
- Checking and cleaning commutator
- Checking solenoid switch
- Starter drive pinion checking
- Testing of starting motor on test bench and on car
- Trouble shooting of starting system
- Safety precautions

Machine Element and Mechanism
EG 2202 AE

Year: II
Semester: II

Total: 3 hours/week
Lecture: 3 hours/week
Tutorial: 1 hour/week
Practical: 1 hour/week
Lab: 1 hour/week

Course description:

This course deals with the machine elements and mechanisms which are very essential for machine design.

Course objectives:

After the completing this course the students will be able to:

- Understand different machine elements, power drives and mechanisms used in machines
- Classify and describe machine elements
- Explain the applications and limitations of various machine elements and mechanisms
- Select material and manufacturing process

Course contents:

Unit 1: Introduction
1.1. Machine and machine elements
1.2. Classification of machines
1.3. Classification of machine elements
1.4. Basic requirements for machine elements and machines
1.5. Design consideration of machine elements
1.6. Selection of materials and manufacturing Process

Unit 2: Joints
2.1. Types of joints
2.2. Undetachable Joints: Rivet Joints, Welded Joints, Brazed joints
2.3. Detachable Joints: Thread Joints, Key Joints
2.4. Classification of power screws and fastening screws
2.5. Forms of threads
2.6. Basic Terminology for a Screw Thread

Unit 3: Shafts and Axles
3.1. Purposes of shaft and axles
3.2. Types of Shafts and Axles
3.3. Materials and Manufacturing method for shafts and axles
Unit 4: Bearings
4.1. Purpose of bearings
4.2. Plain Bearings: Types, Applications and Limitations
4.3. Antifriction Bearings: Types, Applications and Limitations
4.4. Bearing life
4.5. Selection of bearings

Unit 5: Mechanical Power drives
5.1. Introduction
5.2. Classification of drives
5.3. Belt Drives
 - Belt
 - Pulley
 - Types of belt drives
 - Kinematics of belt drive
 - Related numerical problems on geometry and kinematics of belt drive
5.4. Chain Drives
 - Chain
 - Sprocket
 - Types of chain drives
5.5. Rope Drives
 - Rope
 - Classification of ropes
5.6. Friction Drives
 - Introduction
 - Applications and limitations
5.7. Gear Drives
 - Classification of Gear Drives
 - Geometry and Kinematics of Cylindrical and Bevel Gear drives
 - Spur Gear
 - Basic Terminology for Spur Gear
 - Gear Material and Manufacturing Method
 - Related Problems on geometrical and kinematic parameters of spur gear

Unit 6: Couplings
6.1. Introduction
6.2. Purposes of Couplings
6.3. Classification of couplings
6.4. Applications and limitations

Unit 7: Clutches
7.1. Introduction
7.2. Purposes of Clutches
7.3. Classification of clutches
7.4. Applications and limitations
Unit 8: Spring
8.1. Introduction
8.2. Purpose of springs
8.3. Types of springs
8.4. Material for springs
8.5. Applications and limitations

Unit 9: Seals
9.1. Introduction
9.2. Types of seals
9.3. Applications and limitations

Unit 10: Mechanism
10.1. Introduction
10.2. Classification of mechanisms
10.3. Introduction and applications and limitations of:
 • Ratchet mechanism
 • Bell crank mechanism
 • Rack and pinion mechanism
 • Slider crank mechanism
 • Cam mechanism
 • Four bar linkage mechanism
 • Reciprocator mechanism

References:
1. Machine design by Dr. P. C. Sharma and Dr. D. K. Agrawal, S. K. Kataria & Sons
2. Elements of Machine by Luza Shrestha, Pulchowk campus
4. Mechanical Engineering Design by J. E. Shigley
7. P.J. Shah, Engineering Mechanics, S. Chand group, New Delhi, S. Chand group, New Delhi

Vehicle Denting & Painting
EG 2203 AE (Elective)

Year: II
Semester: II

Total: 7 hours/week
Lecture: 2 hours/week
Tutorial: hours/week
Practical: 5 hours/week
Lab: hours/week

Course description:
This course is designed to provide knowledge and skills on vehicle denting & painting related work.

Course objectives:
After the completing this course the students will be able to:
- Carry out simple denting & painting work
- Use sheet metal working tools
- Be familiar with properties of sheet metals
- Apply appropriate techniques to repair dents.

Theory and Practical

Time allocation for the Project

1. Study of the project - 08 hrs.
2. Actual shape of the dented part (free hand sketch) - 08 hrs.
3. Detail drawing & cost calculation - 08 hrs.
4. Preparation work (materials, tools etc.) - 06 hrs.
5. Denting & painting work - 40 hrs.
6. Final Check up & Report writing - 20 hrs.

Unit 1. Identifying dents
1.1 Identify different types of dents
- Shallow dent
- Crease
- Sharp dent
- Collision dent

Unit 2. Familiarizing Dent repair tools
2.1 Dent hammers
2.2 Metal hammers
2.3 Soft hammers
2.4 Push rods
2.5 Push profiles
2.6 Up hold & down hold tools
Unit 3. Selecting materials and consumables
3.1. sand papers
3.2. soft brushes
3.3. soft cloths
3.4. masking paper
3.5. adhesives
3.6. touch paint

Unit 4. Performing Paint-less dent repair
4.1. cleaning and wiping the dent area
4.2. paper masking
4.3. use of tool blow (trial & error method)
4.4. finish & check the repaired dent

Unit 5. Performing collision dent repair
5.1. identify the dents (repairable)
5.2. dismantle or detach the dented part /s
5.3. perform hot/ cold denting as required
5.4. use appropriate tools
5.5. apply trial & error method till the dent is repaired
5.6. clean the repaired area with suitable grade of sand paper
5.7. wash and rinse the area
5.8. apply hot drying method
5.9. apply touch paint (Paint sample bought from the company)
5.10. polish wipe with soft cloth
5.11. finish & check.

References:
1. Basic Sheet metal Practice
4. Ivan Law, Measuring and marking Metals, Workshop Practice Series, Argus Books Ltd.
7. John Van Nn Winden, Blacksmithing, Welding & Soldering, Rural Mechanic Course-2, Tool Foundation
9. Thin plate work

Motor Cycle Repair & Maintenance
EG 2203 AE (Elective)

<table>
<thead>
<tr>
<th>Year: II</th>
<th>Total: 7 hours/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: II</td>
<td>Lecture: 2 hours/week</td>
</tr>
<tr>
<td></td>
<td>Tutorial: hours/week</td>
</tr>
<tr>
<td></td>
<td>Practical: 5 hours/week</td>
</tr>
<tr>
<td></td>
<td>Lab: hours/week</td>
</tr>
</tbody>
</table>

Course description:

This course deals with frame and control, engine, transmission and electrical systems of motorcycle.

Course objectives:

After the completing this course the students will be able to:
- Explain the theory and functioning of motorcycle.
- Identify and list various systems in motorcycle.
- Demonstrate general overhaul and repair of motorcycle and their components.
- Perform repair and maintenance of motorcycle's electrical system.
- Perform routine/preventative/periodical maintenance as well as minor and major repair of motorcycle.

Course content:

Unit 1: Motorcycle frame and control system
5 hrs

1.1. Introduction, purpose and types of frame
1.2. Introduction, purpose and types of wheels and tyres
1.3. Introduction, Purpose, Working principle and types of brake
1.4. Introduction, purpose and working principle of steering system
1.5. Faults and remedies of frame and control system
1.6. Safety Measures

Unit 2: Motorcycle Engine and Transmission
20 hr

2.1 Engine

2.1.1. working principle of four stroke cycle and two stroke cycle engine
2.1.2. Difference between two stroke and four stroke cycle engine
2.1.3. Valve timing mechanism and valve timing diagram
2.1.4. Importance and purpose of measurement
2.1.5. purpose, importance and uses of fuel system in motorcycle
2.1.6. Components of fuel system
2.1.7. Importance, purpose and uses of lubrication system
2.1.8. Different parts and components of lubrication system
2.1.9. Importance, purpose and types of cooling system
2.1.10. Fault and remedies of engine
2.2 Transmission
 2.2.1. Introduction, purpose, types and function of transmission system
 2.2.2. Working principle of clutch, gear box and drive chain.
 2.2.3. Components and parts of clutch, gearbox and drive chain
 2.2.4. Fault and remedies of transmission

Unit 3: Motorcycle Electrical 5 hrs
 3.1. Introduction of Battery, purpose of battery, types of battery,
 3.2. battery charging rating, battery charging connection, charging of battery
 3.3. Introduction, purpose, principle and types of ignition system
 3.4. Introduction, function and circuit layout of starting system
 3.5. Introduction, purpose and function of lighting system
 3.6. Types of lighting system (Head light, side light, parking light, brake light)
 3.7. Bulb, fuse, relay, switch, Circuit layout
 3.8. Introduction, purpose, function and circuit layout of charging system
 3.9. Introduction, purpose and circuit layout of horn
 3.10. Purpose, uses and circuit layout of Instrument panel/indicator
 3.11. Fault and remedies of electrical system
 3.12. Safety measures

Reference:

Practical 75 hrs
1. Perform servicing
2. Repair/maintain chassis
3. Repair/maintain suspension system
4. Repair/maintain brake and control system
5. Repair/maintain fuel supply system
6. Repair/maintain ignition system
7. Repair / maintain engine
8. Measure engine pats.
9. Repair / maintain clutch, gear and drive chain
10. Repair / maintain lubrication system
11. Perform general wiring
12. Repair/maintain motorbike lighting and signaling system
13. Repair/maintain charging and starting system

Automobile Air Conditioning

EG 2203 AE (Elective)

<table>
<thead>
<tr>
<th>Year: II</th>
<th>Lecture: 2 hours/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: II</td>
<td>Tutorial: hours/week</td>
</tr>
<tr>
<td></td>
<td>Practical: 5 hours/week</td>
</tr>
<tr>
<td></td>
<td>Lab: hours/week</td>
</tr>
<tr>
<td>Total: 7 hours/week</td>
<td></td>
</tr>
</tbody>
</table>

Course description:
This course deals with the study of refrigeration principle heating, ventilation, cooling and control system. It also imparts knowledge and skills on main components, and functions of air-conditioning systems used in automobile.

Course objectives:
After the completing this course the students will be able to:
- Explain the theory and functioning air conditioning System used in automobile vehicles.
- Identify and list various types of air conditioning system and their operational advantages and disadvantages.
- Explain working principle of air conditioning system.
- Service and repair of air conditioning system and components.
- Perform routine/preventative/periodical maintenance as well as minor and major repair of automobile air conditioning system.

Course content:

<table>
<thead>
<tr>
<th>Unit 1.</th>
<th>Principles of refrigeration</th>
<th>4 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Meaning</td>
<td></td>
</tr>
<tr>
<td>1.2.</td>
<td>Refrigeration Methods</td>
<td></td>
</tr>
<tr>
<td>1.3.</td>
<td>Units of Refrigeration</td>
<td></td>
</tr>
<tr>
<td>1.4.</td>
<td>Heat pump</td>
<td></td>
</tr>
<tr>
<td>1.5.</td>
<td>Coefficient of performance</td>
<td></td>
</tr>
<tr>
<td>1.6.</td>
<td>Rating of refrigeration machines</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 2.</th>
<th>Refrigerants</th>
<th>4 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Properties and applications of commonly used refrigerants</td>
<td></td>
</tr>
<tr>
<td>2.2.</td>
<td>Refrigerant system hazards</td>
<td></td>
</tr>
</tbody>
</table>
Unit 3. Air-conditioning 2 hrs

3.1. Introduction
3.2. Metabolism in human body
3.3. Human comfort
3.4. Applications of air-conditioning

Unit 4: Refrigeration system, components, and controls. 4 hrs

- Basic principle and operation of refrigeration system
- Introduction and lay out of air conditioning system.
- Types of air conditioning system (Manual and automatic)
- Function, types, specification and constructional details of components
- Various controls

4.1. Compressor 2 hrs

- Introduction, purpose and types of compressor
- Working principle and components of compressor
- Trouble shooting

4.2. Magnetic Clutch 2 hrs

- Introduction, purpose and working principle of magnetic clutch
- Components of magnetic clutch
- Trouble shooting

4.3. Condenser 1 hr.

- Introduction, purpose and working principle of condenser
- Trouble shooting

4.4. Receiver Drier 1 hr.

- Introduction, purpose, working principle and components of Receiver drier
- Trouble shooting

4.5. Expansion Valve 1 hr.

- Introduction, purpose and working principle of Expansion Valve
- Trouble shooting

4.6. Evaporator 1 hr.

- Introduction, purpose and working principle of Evaporator
- Trouble shooting

4.7. Refrigeration Pipe Line 1 hr.

- Purpose and types of pipe line
- Trouble shooting

4.8. Refrigerant Gas and its refilling Process 1 hr.

- Types of refrigerant
- Refilling process
- Trouble shooting
Unit 5: Air Flow Control Systems

- Introduction and lay out of air flow control system.
- Types, parts and components air flow control system

5.1. Blower Motor

- Introduction and purpose of Blower Motor
- Working principle and components and parts
- Circuit of blower motor system
- Trouble shooting

5.2. Cooling fan

- Introduction and purpose of Cooling Fan
- Working principle, Components and parts of Cooling Fan
- Trouble shooting

Unit 6: Heating Systems

- Introduction, purpose, working principle and components of heating system
- Trouble shooting

References:
1. J. K. Gupta, Textbook of Refrigeration & Air conditioning, S. Chand group, New Delhi
2. C. P. Arora, Refrigeration and Air Conditioning, Tata MCGraw-Hill Publishing Company Ltd., New Delhi
3. Thomas W. Birch, Martin Duvic, Automotive Heating and Air Conditioning, Prentice Hall

Practical

1. Introduction
 - Demonstrate and Identify of components and parts of AC system.
2. Compressor
 - Identify and locate compressor
 - Dismount compressor
 - Test pressure, compressor oil, leakages
 - Dismantle compressor
 - Inspection of defective parts
 - Repair and replace defective parts
 - Refill oil
 - Assemble compressor; testing of pressure
 - Mount the unit in the vehicle
 - Adjust and check the tension of AC Belt
3. Magnetic Clutch
 - Identify and locate magnetic clutch
 - Dismount magnetic clutch
 - Test magnetic clutch
 - Inspect short circuit, electric coil, pulley bearing
 - Repair and replace defective parts
 - Test electro-magnetic movement
 - Mount the unit in the vehicle

4. Condenser
 - Identify and locate condenser
 - Detach condenser
 - Test condenser; check leakages, blockages in fins
 - Service/replace defective condenser
 - Assemble the unit in the ac system

5. Receiver Drier
 - Identify and locate Receiver drier
 - Dismount Receiver drier
 - Inspect and test switch
 - Replace defective parts or drier
 - Assemble the unit in the vehicle

6. Expansion Valve
 - Identify and locate Expansion Valve
 - Dismount Expansion Valve
 - Inspect of the valve
 - Service and adjust valve
 - Replace defective valve
 - Assemble the components and parts in the system

7. Evaporator
 - Identify and locate of Evaporator
 - Detach Evaporator; check leakages, blockages on fins
 - Service/replace defective Evaporator or fin sensor
 - Assemble the unit in the ac system

8. Blower Motor
 - Identify and locate Blower Motor
 - Dismount blower motor unit
 - Inspect parts; check switch, resistor, motor, relay, fuse, fan blade, ac filter, ventilation
 - Service/repair/replace defective parts
 - Assemble the unit in the ac system
9. **Refrigeration Pipe line**
 - Identify and locate refrigeration pipe line
 - Remove the pipe line; check leakages, pressure and wear and tear in the pipe line
 - Replace defective pipe or parts
 - Connect pipe line in the system and check

10. **Cooling Fan**
 - Identify and locate Cooling Fan
 - Remove Cooling Fan
 - Inspect of parts; check switch, thermistor, motor, relay, fuse, fan blade, etc.
 - Service/repair/replace defective parts
 - Connect the unit in the ac system

11. **Refrigerant Gas and its refilling process**
 - Refrigerant Gas Refilling Process
 - Leakage testing with pressure
 - Fill specified refrigerant

Third Year
(Fifth and Sixth Semesters)
Fifth Semester

Subjects:

1. EG 3103 EE Control System
2. EG 3105 ME Computer Graphics (Auto CAD)
3. EG 3106 ME Fundamental of Hydraulics & pneumatics
5. EG 3201 AE Automobile Technology III
6. EG 3102 AE Technical Communication
7. EG 3103 AE Industrial Orientation
8. EG 3104 AE Automotive Electronics
Control System
EG 3103 EE

Year: III
Semester: I

Total: 4 hours/week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hour/week

Course Description:

The course deals with the major components, their characteristics and application of automatic control system.

Course Objectives:

After completing this course the students will be able to:

- understand the basic features of analog automatic control system
- understand the applications, characteristics and operation of various control system components and transducers
- enable to install and maintain different control systems

Course contents:

Unit 1. The general concept of control system [4]

1.1 meaning of control
1.2 Practical example of control systems e.g. temperature control, traffic control etc.
1.3 open loop or manual control systems
1.4 The idea of close loop and automatic control system
1.5 Feedback and feed forward control in nature
1.6 actuator, controller, sensor and error detectors
1.7 effect of disturbances
1.8 task of control engineers

Unit 2. Transducers [8]

2.1 principle of transducers
2.2 Accuracy considerations in measurements
2.3 strain gauges
2.4 Potentiometers
2.5 Tachometer and tachogenerator
2.6 thermocouples
2.7 photo –electric cells
2.8 electromagnetic flow meters
2.9 pneumatic displacement detectors
Unit 3. Simple (Introduction to) mathematical modeling of Linear time invariant systems [8]

3.1 Introduction
3.2 Derivation of mathematical model
3.3 Transfer function representation
3.4 Time response of first order system
3.5 Time response of second order system
3.6 Concepts of response oscillations and damping
3.7 Steady state error
3.8 Definition of stable and unstable systems

Unit 4. DC and Stepper Motors in Control Systems [6]

4.1 Explain how DC motors operate.
4.2 Select a motor based on mechanical and performance requirements.
4.3 Describe how DC motor control systems work.
4.4 Understand how stepper motors and their driver circuits work.

Unit 5. AC Motors in Control Systems [4]

5.1 Explain how AC motors operate.
5.2 Select a motor based on mechanical and performance requirements.
5.3 Describe how AC motor control systems work.

Unit 6. Controllers [5]

6.1 Transfer function for P, PI, PD and PID controller and their effects on time response
6.2 Electric P, PI, PD and PID controllers
6.3 Pneumatic P, PI, PD and PID controllers
6.4 Hydraulic controllers

Unit 7. Relay Logic and PLCs [5]

7.1 Explain how to tune a process control system.
7.2 Understand how analog and digital control circuits work.
7.3 Explain the operation of relays, counters, and sequencers.
7.4 Understand how PLCs work.
7.5 Interpret ladder logic diagrams.

8.1 Automatic co-ordinate positioning
8.2 Profile generation by copying
8.3 Introduction to computerized control
Laboratory Exercises: [7 x 2 hrs]

1. To study the construction and characteristics of strain gauge transducer.
2. To study the construction and characteristics of thermocouple
3. Demonstration for ON/OFF Temperature Control Using thermo-couple as sensor and operational amplifier as control switch
4. To study the construction and characteristics of permanent magnet DC Tachogenerator.
5. Demonstration for Open-loop and close loop Speed Control of DC servomotor
6. PID controller circuit using Operational Amplifier
7. Demonstration for Pneumatic PID controllers

Suggestions for instruction:

1. As far as possible avoid derivation of complex mathematic equations
2. Elaborate the mathematics as far as possible by using graphical representation
3. Show the sectionalize sketches of physical components using projectors

Text Books/References:

1. G.T. Brayan, "Control system for technicians", Hodder and Stoughton Educational, Great Britain
2. A.K. Mahalanabis, "Introductory System Engineering" Wiley eastern Limited, India
Computer Graphics (Auto CAD)
EG 3105 ME

Year: III
Semester: I

Total: 3 hours/week
Lecture: 1 hours/week
Tutorial: hours/week
Practical: 2 hours/week
Lab: hours/week

Course description:

This course deals with generation of two-dimensional and three-dimensional drawing using Auto CAD. It also deals with the inserting dimensions and text in drawing.

Course objectives:

After completing this course the students will be able to:
• draw two dimensional objects using Auto CAD,
• draw three dimensional objects using solid modeling, and
• Insert dimension and text on drawing.

Course contents:

Unit 1: Introduction [4]

1.1 Loading AutoCAD, Screen organization
1.2 Communicate with AutoCAD using the keyboard, the cursor menu, the screen menu, the pull-down menu, the toolbar menu and the dialogue box
1.3 AutoCAD command and system variables, Command options and default
1.4 Setting UNITS and DRAWING LIMITS
1.5 Coordinate System: entering distances and angles

Unit 2: Basic Drawing Commands [12]

2.1 LINE command and its options
2.2 POINT command
2.3 XLINE command and its options
2.4 ARC command and its options
2.5 CIRCLE command and its options
2.6 POLYGON command and its options
2.7 PLINE command and its options
2.8 MLINE command and its options
2.9 SPLINE command and its options
Unit 3: Modifying commands

3.1 Object selection methods
3.2 ERASE, OOPS, UNDO, REDO commands
3.3 OFFSET command
3.4 COPY, MOVE, ROTATE, MIRROR, ARRAY commands
3.5 SCALE, STRETCH commands
3.6 CHAMFER, FILLET commands
3.7 TRIM, EXTEND commands
3.8 EXPLODE, BREAK, LENGTHEN, DIVIDE commands
3.9 PEDIT command
3.10 CHPROP command, ltype, ltscale, lweight and color
3.11 DDSELECT, DDMODIFY commands
3.12 Use of Grips

Unit 4: Drawing Aids in AutoCAD

4.1 ORTHO, GRID, SNAP commands
4.2 ROTATED SNAP, OSNAP commands
4.3 Creation of layers and layer properties
4.4 Point filter
4.5 Use of Calculator

Unit 5: Display commands

5.1 ZOOM, PAN, VIEW commands
5.2 REGEN command
5.3 Creating Viewports

Unit 6: Inquiry Commands

6.1 HELP command
6.2 ID, DIST, AREA commands
6.3 MASSPROP command
6.4 LIST, DBLIST, STATUS commands
6.5 TIME command

Unit 7: Fine tuning drawings

7.1 HATCH and BHATCH commands
7.2 Creating Isometric drawing

Unit 8: Grouping in AutoCAD

8.1 BLOCK, WBLOCK commands
8.2 INSERT, MINsert commands
8.3 EXPLODE, BASE commands
Unit 9: Working with text in AutoCAD [2]
 9.1 TEXT, MTEXT, DTEXT commands
 9.2 Justifying text and text fonts
 9.3 STYLE command

Unit 10: Dimensioning in AutoCAD [2]
 10.1 Dimensioning commands
 10.2 Dimension styles and dimension setup
 10.3 Dimension scale

Unit 11: 3-D solid modeling [8]
 11.1 Creating solid box, solid cylinder, solid cone and solid sphere
 11.2 Boolean operations: Union, Subtraction, Intersection
 11.3 EXTRUDE command

Unit 12: Plotting drawings [4]
 12.1 Layout management
 12.2 Device information, pen parameters, paper size and orientation
 12.3 Scale, rotation and origin
 12.4 MVIEW, MVSETUP commands

Reference:
1. G. Omura; Mastering Auto CAD, Latest Edition
Fundamentals of Hydraulics and Pneumatics
EG 3106 ME

Year: III
Semester: I
Total: 4 hours /week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: 1 hour/week

Course Description:

This course deals with the basic fundamentals of hydraulics and pneumatics and provides general concept associated with hydraulics and pneumatics equipment.

Course Objectives:

After completing this course the student will be able to:

1. describe the uses of various kinds of hydraulic and pneumatic equipment
2. explain the operation of various kinds of hydraulic and pneumatic equipment
3. demonstrate basic knowledge of service, check, maintenance, diagnosis and testing of hydraulic and pneumatic equipment

Course contents:

Unit 1. **Fundamental of hydraulics and pneumatics** [4]

2.1 Introduction
2.2 Development stage of hydraulic and pneumatic equipment
2.3 Introduction of hydrostatics and hydrodynamics
2.4 Basic principles of hydraulics and pneumatics
2.5 Advantages and disadvantages
2.6 Applications of hydraulic and pneumatic system

Unit 2. **Industrial hydraulics** [15]

2.1 Hydraulic system
 2.1.1 Types of hydraulic system and their properties: Open center system, closed center system
 2.1.2 Major and auxiliary components and their purposes

2.2 Hydraulic Fluid
 2.2.1 Function of hydraulic oil
 2.2.2 Types of hydraulic fluids: Petroleum base fluids, Synthetic base fluids, Water
 2.2.3 Properties of hydraulic oil
 2.2.4 Basic requirements of hydraulic oil

2.3 Hydraulic Components
 2.3.1 Pumps: Introduction to hydraulic pumps and their types
2.3.2 Gear pump, principle, uses, trouble shooting
2.3.3 Vane pump, principle, uses, trouble shooting
2.3.4 Piston pump, principle, uses, trouble shooting

2.4 Hydraulic Cylinders
2.4.1 Introduction to hydraulic cylinders and its types
2.4.2 Piston types: single and double acting
2.4.3 Vane type cylinder
2.4.4 Miscellaneous cylinder

2.5 Hydraulic Valves and its types
2.5.1 Purpose and function of Pressure control valves, flow control valve and direction control valve

2.6 Hydraulic Motor
2.6.1 Introduction to hydraulic motor and types
2.6.2 Gear motor
2.6.3 Vane motor
2.6.4 Piston motor

2.7 Accumulator
2.7.1 Purpose and functions of accumulator
2.7.2 Spring loaded accumulator
2.7.3 Weight loaded accumulator
2.7.4 Pneumatic accumulator

2.8 Hydraulic Filters
2.8.1 Purpose and functions
2.8.2 Contaminants
2.8.3 Types of filters

2.9 Reservoir
2.9.1 Function
2.9.2 Basic features of reservoir

2.10 Oil Cooler
2.10.1 Functions
2.10.2 Types of oil cooler

Unit 3. Industrial Pneumatics

3.1 Pneumatic system
3.1.1 Introduction and types of pneumatic system
3.1.2 Components of pneumatic system

3.2 Compressed air
3.2.1 Properties of compressed air
3.2.2 Preparation of compressed air
3.3 Compressors
 3.3.1 Piston type compressors
 3.3.2 Vane type compressors
 3.3.3 Helical compressors
 3.3.4 Centrifugal compressors

3.4 Air Cylinder and Air Motors
 3.4.1 Introduction
 3.4.2 Types

3.5 Valves
 3.5.1 Pressure control valve
 3.5.2 Flow control valve
 3.5.3 Direction control valve

3.6 Working principle of After Coolers
3.7 Working principle of Dryers
3.8 Working principle of Receiver
3.9 Filters
 3.9.1 Purpose
 3.9.2 Contaminants in a pneumatic system
 3.9.3 Types
 3.9.4 Selection of filters

4.1. Hydraulic and pneumatic symbols
4.2. Drawing of hydraulic and pneumatic circuits

Unit 5. Introduction to general maintenance of hydraulic system and pneumatic system [8]
5.1. Preventive Maintenance
 1.1.1 Lines cleaning
 1.1.2 Preventive overhauling
 1.1.3 Preventing leaks, air-in-oil problems

5.2. Diagnosis and Testing of Hydraulic system and Pneumatic system
 1.1.4 Introduction
 1.1.5 Basic steps

Practical/Lab [15]
1. Experimental works on hydrostatics
2. Basic Hydraulic System
3. Pump operation system
4. Compressor operation system
5. Identification of hydraulic and pneumatic symbols
6. Control of pneumatic actuators, Direct command/Indirect command
7. Speed control of cylinder
8. Electro-pneumatic control of linear actuators
9. Automatic reciprocation and sequential operations
10. Control of Cylinders with Relays and Limit Switches
11. Circuit design problem

References:
3. Hydraulics-John Deere service publications, Molino, Illions
4. G. P.Gorkhali, First Course in Hydraulics
EG 3107 ME

Total: 3 hours /week
Lecture: hours/week
Tutorial: hours/week
Practical: 3 hours/week
Lab: hours/week

Year: III
Semester: I

Course description:
Knowledge of method of finding shapes and sizes of machine element is very essential from their strength and stiffness / rigidity view points. Also the knowledge of calculation of manufacturing cost of machine element is essential. After completion of the course students will be able to design and find out the cost of the simple machine element. Theory explanation is supported by applied numerical problems.

Course objectives:
After completing this course the students will be able to:
- Analyze the factors affecting choice of material, assuming knowledge of materials as covered in material science and strength of materials.
- Design the simple machine elements for axial and torsional loading.
- Calculate the total cost of manufacturing of simple machine element.

Course contents:

Unit 1. Fundamental Principles. [9]
1.1 The difference between mechanism, machine element, and machine.
1.2 Design procedure – Gathering information and formulating design problems.
1.3 Basic requirements of machine elements, strength, stiffness, rigidity, wear resistance
1.4 Magnitude, direction, and type of load – axial, bending, torsion, and combination.
1.5 Strain and elasticity, stress, factor of safety.
1.6 Elastic and plastic behavior of ductile and brittle materials, modulus of elasticity and modulus of rigidity.
1.7 Fatigue, endurance limit, stress concentration, effects on factor of safety.
1.8 Materials availability, weight and dimensions, process-ability and standardization.

Unit 2. Design of following components under axial loading [6]
2.1 Bolts under tension and both tension and compression, effect of initial tightening.
2.2 Riveted joints lap and butt for tie bar.
2.3 Welded connections, lap and butt weld.
2.4 Turn buckle
2.5 Pins
2.6 Helical springs.
Unit 3. Design of the following under torsional loading. [6]

3.1. Shaft (circular only)
3.2. Rectangular taper sunk key.
3.3. Rigid flange coupling
3.4. Simple disk clutch.
3.5. Straight armed cast iron pulley.

4.1. Introduction – Purpose of estimating and costing.
4.2. Meaning of estimating and costing.
4.3. Elements of costs.
4.4. Component of costs.
4.5. Overheads.
4.6. Allocating of overheads.

Unit 5. Estimation of material cost. [6]

5.1. Estimation of cost by volume.
5.2. Estimation of cast by weight.
5.3. Cost estimation of simple machine elements such as – pulley, spindle, wall bracket, Turn buckle.

6.1. Set up time
6.2. Estimation of operation time: machine time for various operations – turning, facing, threading, drilling, milling and shaping.
6.3. Non machining time.
6.4. Down time

Unit 7. Estimation in following shops. [6]

7.1. Welding shop: Gas welding and Arc welding.
7.2. Foundry shop: Pattern cost and casting cost.
7.3. Sheet metal shop: size of blank, blanking and punching time.

Books for reference:
Automobile Technology III
EG 3101AE

Year: III
Semester: I

Total: 13 hours/week
Lecture: 4 hours/week
Tutorial: hours/week
Practical: 9 hours/week
Lab: hours/week

Course description:
This course includes diesel engines, other small engines and appliances, farm equipment, construction equipment, air pollution and vehicle wiring system.

Course objectives:
After the completing this course the students will be able to:

- Understand diesel engines
- Understand small engines, farm and construction equipment
- Understand engine characteristics
- Understand the working principle of supercharger, turbocharger and inertia charger and their construction and applications.
- Understand air pollution by vehicles and its regulation
- Understand vehicle wiring system.

Course contents:

Unit 1: Combustion chambers of Diesel Engine 5 hrs.

1.1 Introduction to combustion chambers
1.2 Types of combustion chambers
1.3 Direct injection combustion chamber
1.4 Indirect injection combustion chamber
1.5 Advantages of DI combustion chamber
1.6 Disadvantages of DI combustion chamber
1.7 IDI swirl type chamber
1.8 IDI pre chamber system type
1.9 Advantage and disadvantages of IDI combustion chamber
1.10 Fault findings

Unit 2: Pre-heating system (Diesel Engine/Glow plug) 3 hrs

2.1 Introduction of Pre-heating system
2.2 Circuit layout of Pre-heating system
2.3 Function of pre-heating system
2.4 Working principle, Purposes and uses
2.5 Fault findings
Unit 3: Small Engines and Appliances 4 hrs

3.1. Land mover
3.2. Generator
3.3. Compressor

Unit 4: Farm and Construction Equipment 5 hrs

4.1. Tractor
4.2. Dozer
4.3. Road building equipment

Unit 5: Non conventional Energy Vehicles 10 hrs

5.1. Battery operated vehicle
5.2. Alcohol operated
5.3. Bio diesel operated
5.4. LPG and CNG operated
5.5. Solar operated vehicle
5.6. Hybrid engine
5.7. Fuel cell vehicles

Unit 6: Engine characteristics 5 hrs

6.1. Introduction and types of characteristics
6.2. Speed characteristics of engines
 • External speed characteristics
 • Part load speed characteristics
6.3. Load characteristics of engine
 • Full load characteristics
 • Part load characteristics
6.4. Special Characteristics
 • Adjustment characteristics
 • Idle running characteristics

Unit 7: Super Charging and Turbo charging System 6 hrs

7.1. Introduction, purpose and function of super charger and turbo charger
7.2. Principle, components and application of super charging system
7.3. Principle, components and application of turbo charging system
7.4. Principle, components and application of inertia super charging system
7.5. Fault and remedies
Unit 8: Emission Control System 12 hrs

8.1. Introduction to emission control system
8.2. Purpose and importance of emission control system
8.3. Pollution, pollutants and emission
8.4. Pollution and its measurement
8.5. HSU and measurement
8.6. Problems or issues of vehicle emission
8.7. Vehicle emission norms and standards
8.8. Function and working principle of emission control system and devices
8.9. Different components and devices used for emission control
8.10. Fault findings

Unit 9: Auto electrical wiring 10 hrs

9.1. Symbols used in car wiring
9.2. Lighting systems
9.3. Harness and color coding in automobile wiring
9.4. Electric circuit of an automobile
9.5. Lighting system
9.6. Accessory circuit
9.7. Types of bulbs of an automobile
9.8. Headlights and parking light
9.9. Side lights, reverse light, brake light, fog light, horn
9.10. Interior lights
9.11. Fault findings

Reference Books:
3. T.R. Banga, Nathu Singh, A text book of Automobile Engineering,
4. Frederick C. Nash, Kalman Banitz, Automotive Technology
5. K. M. Moeed, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
7. P. S. Gill, A Text book og Automobile Engineering Volume I & II, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
8. Dr. Kripal Singh, Automobile Engineering Volume I & II, Standard Publishers Distributors, Naisarak, Post box 1066, Delhi, 110006
10. R.K. Singal, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
12. G.B. S. Narang, Automobile Engineering, Khanna Publishers
17. Bosch, *Diesel Fuel Injection*, Society of Automotive Engineers (SAE), USA
19. Repair & Maintenance of Stationary Diesel Engines, Rural Mechanic Course-3, Tool Foundation

Practical

1. **Diesel Engines**
 - Demonstrate the working principle of diesel engine
 - Identification of parts and their functions
 - Dismantling of engine
 - Checking and replacement of defective parts
 - Measurement of engine components
 - Identification and maintenance of lubrication system
 - Identification and maintenance of cooling system
 - Assembling and testing engine.
 - Setting valve timing and fuel Injection pump timing
 - Trouble shooting
 - Safety precautions

2. **Diesel fuel system**
 - Identification and demonstration of various components of diesel fuel system
 - Servicing of various components of diesel fuel system
 - Demonstrate the working principle of fuel injection pump
 - Dismantling injection pump
 - Identification of parts and their function
 - Inspection and replacement of defective parts.
 - Assembling parts
 - Testing injection pump on test bench
 - Dismantling injection nozzle
 - Identification of parts and their functions
 - Checking and replacing defective parts
• Assembling and testing nozzle and set the pressure
• Trouble shooting
• Safety precautions

3. Auto-Electric Wiring
• Safety precautions
• Wiring symbols
• Circuit diagram

3.1. Head light system
• Head light wiring layout
• Identification of head light components
• Checking of components and circuits.
• Head light adjustment, repair and maintenance

3.2. Parking Light System
• Parking light wiring layout
• Identification of parking light components
• Checking of components and circuits, repair and maintenance

3.3. Back Light System
• Back light wiring layout
• Identification of back light components
• Checking of components and replace
• Repair and maintenance of circuits

3.4. Flasher and side indicator
• Flasher system wiring layout
• Identification of flasher system components
• Checking of components and replace
• Repair and maintenance of circuits

3.5. Cabin light, baggage compartment, bonnet and dashboard light
• Identification of components
• Wiring layout
• Checking/replace of components and circuits
• Repair and maintenance

3.6. Brake Light
• Wiring layout
• Identification of components
• Checking/replace components
• Repair and maintenance

3.7. Horn System
• Wiring layout
• Identification of components
• Checking/replace components
• Repair and maintenance
• Adjusting horn
3.8. Instruments and Indicators
- Water temperature indicator system:
- Wiring layout
- Identification of components
- Checking/replace of components
- Repair and maintenance

3.9. Oil pressure indicator system
- Wiring layout
- Identification of components
- Checking/replace of components
- Repair and maintenance

3.10. Fuel indicator gauge system
- Wiring layout
- Identification of components
- Checking/replace of components
- Repair and maintenance

3.11. Wiper System
- Wiring layout
- Identification of components
- Checking and replace of components
- Repair and maintenance of circuit

3.12. Power windows
- Wiring layout
- Identification of components
- Checking and replace of components
- Repair and maintenance of circuit
Technical Communication
EG 3102 AE

Year: III
Semester: I

Total: 3 hours/week
Lecture: 2 hours/week
Tutorial: 1 hour/week
Practical: hours/week
Lab: 1 hour/week

Course description:
This course deals with the study of technical communication practices used in automobile engineering.

Course objectives:
After completing this course the students will be able to:
• write technical documents such as reports, abstracts, articles and manuals
• demonstrate knowledge of and familiarity with the nature of technical writing and the qualities of technical styles
• apply the principles of letter writings to various types of technical communication
• demonstrate a knowledge of writing various types of short reports
• gather, analyze and organize needed data for writing formal report

Course contents:
1. Introduction to Technical writing
2. Information structure techniques in technical writings
3. Types of technical reports
4. Process and guidelines in technical writings
5. Abstract writing
6. Proposal writing
7. Technical report writing
8. Technical specification writing
9. Memo and Minutes
10. Speech writing
11. Business letters
12. Presentation with Graphic aids
13. Contemporary communication
14. Communication skills
 (a) Writing
 (b) Self communication
 (c) Interviewing
 (d) Interpersonal (dialogue)
 (e) Interaction
References:
3. Dr. Gajanan Malviya, Prof. R. N. Sukla, Communications Skills, S. Chand group, New Delhi
Industrial Orientation
EG 3103 AE

Year: III
Semester: I

Total: 3 hours/week
Lecture: hours/week
Tutorial: hours/week
Practical: 3 hours/week
Lab: hours/week

Course description:

The student will be assigned to various industries in Nepal on a full time /part time basis for duration of 45 hours. During this period; student will be acquainted with the prevailing condition of the industry. At the end of the course, student will submit a complete report conforming to a standardized format along with the daily diary.

Industrial Orientation shall consist of two aspects namely-skill & management. Considering this, student will observe the operation of the industry for the first two days. Following three days he/she will work as operator, machinist, mechanic or likewise responsibility given by the authority of the industry. However, the student will be closely guided and supervised by the respective supervisor. The remaining one day will be utilized for collection of essential and relevant information for preparing the report. The report shall be completed and duly endorsed by the industry prior to the submission to the department.

Format of the report must include the following;

1. Profile of the Industry
2. Profile of the Industry personnel
3. Plant & Machine lay out
4. Significant problem/s in the Industry
5. Suggestions for the improvement of selected aspects of problems; (production, Equipment, Material, Management, Staff etc.)
6. Appendix

Course objectives:

After completing the course the students will be able to:

• be familiar with Industry set up and Equipment lay out
• Understand technological aspects and production techniques
• know the essential managerial aspects
• establish a good rapport between Industry and Institution
Practical

Unit 1. Observing Industry rules and Norms. 16 hrs.

1.1. Safety and Workshop lay out
 1.1.1. Safety aspects (Personal, Plant & Product)
 1.1.2. Workshop lay out (Location, Plant Installation and Store etc.)

Unit 2. Knowing Production process & Technology 24 hrs
2.1. Manufacturing process, tools & Equipment
 2.2.1. Applicable techniques for production
 2.2.2. Appropriate tools & Equipment

Unit 3. Report writing (compilation) 5 hrs.

3.1. Maintaining Daily Diary & collecting information
 3.1.1. writing notes in the diary (daily)
 3.1.2. acquiring necessary information
 3.1.3. including appendix

Automotive Electronics
EG 3104 AE

Year: III
Semester: I

Total: 6 hours/week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: 3 hours/week
Lab: hours/week

Course description:
This course is designed to impart knowledge and skills on auto electronics systems used in automobile engineering.

Course objectives:
After the completing this course the students will be able to:
- Understand the fundamentals of auto electronics.
- Understand the working principle and application of electronics components, sensors, actuators etc.
- Understand the working principle and application of digital electronics system in automobile vehicles.
- Diagnose, test the auto electronics system of automobile vehicles.

Course content:

Unit 1: Automotive Fundamentals
1.1. Use of electronics in Automobile
1.2. Evolution of Electronics in the Automobile
1.3. The automobile Physical Configuration
 - Engine
 - Drive train (transmission, differential, axle)
 - Suspension
 - Steering
 - Brakes
 - Instrumentation
 - Electrical/electronic
 - Motion control
 - Comfort/convenience
 - Entertainment/communication/navigation

Unit 2: The Basics of Electronic Engine Control
3.1 Motivation for Electronic Engine Control
 - Exhaust Emissions
 - Fuel Economy
3.2 Concept of electronic Engine Control System
3.3 Definition of General Terms
- Parameters
- Variables

3.4 Definition of Engine Performance Terms
- Power
- BSFC
- Torque
- Volumetric Efficiency
- Thermal Efficiency
- Calibration

3.5 Engine Mapping
- Effect of Air/Fuel Ratio on Performance
- Effect of Spark Timing on Performance
- Effect of Exhaust Gas Recirculation on Performance

3.6 Control Strategy

3.7 Electronic Fuel Injection System (Petrol and Diesel Engine)

3.8 Electronic Fuel Control System
- Engine Control Sequence
- Closed-Loop Control
- Closed-Loop Operation
- Open Loop Mode
- Analysis of Intake Manifold Pressure
- Measuring Air Mass

3.9 Electronic Ignition System

Unit 3: Sensors and Actuators

3.1 Application of Sensors and Actuators
3.1.1. Variables Measurement
- Mass air flow (MAF) rate
- Exhaust gas oxygen concentration (possibly heated)
- Throttle plate angular position
- Crankshaft angular position/RPM
- Coolant temperature
- Intake air temperature
- Manifold absolute pressure (MAP)
- Differential exhaust gas pressure
- Vehicle speed
- Transmission gear selector position

3.1.2. Set of Switches:
- Air conditioner clutch engaged
- Brake on/off
- Wide open throttle
- Closed throttle
- Reed switch

3.1.3. Air flow rate sensor
- Indirect Measurement of Mass Air Flow
3.1.4. Engine Crankshaft Angular Position Sensor
 o Magnetic Reluctance Position Sensor
 o Hall-Effect Position Sensor
 o Optical Crankshaft Position Sensor
3.1.5. Throttle Angle Sensor
3.1.6. Temperature Sensors
 o Engine Coolant Temperature Sensor
 o Intake Air Temperature Sensor
3.1.7. Sensor for Feedback Control
 o Exhaust Gas Oxygen Sensor
 o Knock Sensors
3.1.8. Automotive Engine Control Actuators
 o Fuel pump
 o Fuel Injectors
 o IAC valve
 o Exhaust Gas Recirculation Actuator
 o Purge canister valve
 o Ignition System

Unit 4: Digital Engine Control System

5.1. Digital Engine Control Features
5.2. Control Modes for Fuel Control
 4.2.1. Engine Crank
 4.2.2. Engine Warm-Up
 4.2.3. Open-Loop Control
 4.2.4. Closed-Loop Control
 4.2.5. Acceleration Enrichment
 4.2.6. Deceleration Leaning
 o Idle Speed Control
5.3. EGR Control
5.4. Electronic Ignition Control
 4.4.1. Closed-Loop Ignition Timing
 4.4.2. Spark Advance Correction Scheme
5.5. Integrated Engine Control System
 4.5.1. Secondary Air Management
 4.5.2. Evaporative Emissions Canister Purge
 4.5.3. Torque Converter Lock-up Control
 4.5.4. Automatic System Adjustment
 4.5.5. System Diagnosis
5.6. Improvements in Electronic Engine Control
 4.6.1. Integrated Engine Control System
 4.6.2. Oxygen Sensor Improvements
 4.6.3. Fuel Injection Timing
Unit 5: Vehicle Motion Control 5 hrs
 5.1. Typical Cruise Control System
 5.1.1. Speed Response Curves
 5.1.2. Digital Cruise Control
 5.1.3. Throttle Actuator
 5.2. Cruise Control Electronics
 5.2.1. Stepper Motor-Based Actuator
 5.2.2. Vacuum-Operated Actuator
 5.3. Antilock Braking System
 5.3.1. Tire-Slip Controller
 5.4. Electronic Suspension System
 5.5. Electronic Steering Control
 5.6. Air Bag
 5.7. Theft Alarm

Unit 6: Automotive Instrumentation 5 hrs
 6.1. Input and Output Signal Conversion
 o Multiplexing
 6.2. Sampling
 6.3. Fuel Quantity Measurement
 6.4. Coolant Temperature Measurement
 6.5. Oil Pressure Measurement
 6.6. Vehicle Speed measurement
 6.7. Display Devices
 6.8. LED
 6.9. LCD
 6.10. VFD
 6.11. CRT
 6.12. The Glass Cockpit
 6.13. Trip Information Computer

Unit 7: Diagnostics 7 hrs
 7.1. Timing Light
 7.2. Engine Analyzer
 7.3. Electronic Control System Diagnostics (EFI and CRDI)
 o On-board Diagnostics
 o Off-board Diagnosis
 7.4. Expert Systems
 7.5. Occupant Protection Systems

Unit 8: Future Trends Automotive Electronic systems 1 hr.
Reference books:
1. William B. Ribbens, Understanding Automotive Electronics, Society of Automotive Engineers Inc.
2. Robert Bosch Gmbh, Automotive Electrics Automotive Electronics, John Wiley & Sons
4. Tracy Martin, How to Diagnose & Repair Automotive Electrical System, Motorbooks Workshop, MBI Publishing Company, USA
5. V.A. W. Hillers, Hiller's Fundamentals of Automotive Electronics, The Institute of Motor Industry
9. H. Gerscher, Technology for Automotive Trade Volume 1 & 2, GTZ
10. Bosch, Diesel Fuel Injection, Society of Automotive Engineers (SAE), USA
12. Bosch, Automotive Brake Systems, Society of Automotive Engineers (SAE), USA

Practical

1. EFI/EMS (Diesel and Petrol)
 • Parts identification and location
 • Circuit layout
 • Use of scanner
 • Diagnosis code reading using scanner and malfunction light
 • Inspect system and components
 • Identification of defective parts
 • Replace of defective parts and components
 • Testing of components and system
 • Safety measures

2. Anti-lock brake systems (ABS)
 • Parts identification and location
 • Circuit layout
 • Checking system and component
 • Identification of defective parts
 • Replace of defective parts and components
 • Testing of components and system
 • Safety measures

45 hrs

35 hrs

6 hrs
3. **Accessories**
Identification, location, and testing of accessories:

- Car audio system
- Seat belt alarm
- Electronic mirror
- Centre locking system
- Power window
- Remote control keyless entry
- Air bag system

Sixth Semester
Subjects:
1. EG 3203 ME Industrial Hygiene & Safety
2. EG 3205 ME Personnel Management
3. EG 3206 MG Entrepreneurship Development
4. EG 3201 AE Automobile Technology IV
5. EG 3102 AE Vehicle Driving Practice
6. EG 3203 AE Industrial Attachment
7. EG 3204 AE Public Relations & personality Development
Industrial Hygiene and Safety
EG 3203 ME

Year: III
Semester: II

Total: 3 hours /week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: hours/week

Course description:

Awareness about hygiene and safety is the most important thing which every operator, worker, technician and engineer must always bear in mind while working in the industry. Human life is very precious and the organization of the industry must pay full attention to health and safety of workers. This course deals with various industrial hazards and their prevention.

Course objectives:

After completing this course the students will be able to:

- induce safety awareness
- locate unsafe locations and activities on shop floor and take corrective actions
- understand statutory requirements regarding industrial hygiene and safety
- manage industrial safety

Course content:

Unit 1: Introduction to industrial hygiene and safety [6]

- 1.1 Scope of industrial hygiene and safety
- 1.2 Cost and liability of industrial hygiene and safety
- 1.3 Accident, causes of accident and accident prevention methods
- 1.4 Principles and practices of safety management

Unit 2: Industrial Environment [4]

- 2.1 Sanitation in industry
- 2.2 Ventilation system
- 2.3 Lighting system
- 2.4 Heating system

Unit 3: Electrical safety [6]

- 3.1 Effects of electric current on health
- 3.2 Electrical accidents
- 3.3 Electrical safety standards and regulations
- 3.4 Prevention of electrical accidents
- 3.5 Safety requirements for electric installation
3.6 Protective equipment for electrical safety

Unit 4: Fire Prevention and control [4]

4.1 Fire hazards
4.2 Accident prevention principle
4.3 Fire control methods

Unit 5: Noise Pollution and its control [4]

5.1 Effect of noise on health
5.2 Standard requirements for industrial noise levels
5.3 Noise control principle and methods
5.4 Personal protective equipment

Unit 6: Air Pollution [2]

6.1 Classification of pollutants in industry
6.2 Sources of pollutants
6.3 Permissible limits
6.4 Control of the environment

Unit 7: Electromagnetic Radiation [4]

7.1 Health hazards due to electromagnetic radiation
7.2 Permissible limits of electromagnetic radiation
7.3 Electromagnetic radiation protection principle
7.4 Personal protective equipment

Unit 8: Industrial Vibration [2]

8.1 Causes of vibration
8.2 Personal protective devices

Unit 9: Material Handling [4]

9.1 Factors affecting selection of means for handling of materials
9.2 Mechanical material handling
9.3 Handling of dangerous chemicals

Unit 10: Machine Guarding [4]

10.1 Legal requirements
10.2 Assessment of guards
10.3 Types of guards
10.4 Design aspect of guards

Unit 11: Physical and chemical hazards and Safety measures in various operations [5]

11.1 Arc welding and gas welding
11.2 Forging
11.3 Casting
11.4 Machining
11.5 Automotive works

Suggestions for instructions:

1. Demonstration of protective devices
2. Visit to industries
3. Demonstration of using various instruments and equipment

References:

2. H. V. Krishnan, An introduction to Safety Engineering and Management
Personnel Management
EG 3205 ME

Year: III
Semester: II

Total: 3 hours /week
Lecture: 3 hours/week
Tutorial: hours/week
Practical: hours/week
Lab: hours/week

Course description:

The personnel management is concerned with the use of definite principles for organizing and treating individuals at work and to develop them to the full as individuals and member of the group so that they give best results to the enterprise. Men, materials, machines and money are the four important factors of production. Among these four factors human beings constitute the organization at all levels and are regarded as only dynamic factors of production. So manpower planning, their proper selection, recruitment and training is an important aspect of personnel management. This course deals with basic concepts and principles of personnel/human resources management applied to factory management. The course models human resources management (HRM) as a system and discusses the importance of “people” dimension in organizational growth. HRM as a system consists of input, processing, output and feedback. It has both external and internal environment. The input components to HRM system are human energy and competencies, organization plan, human resource plan, management inventory, job analysis, labor market, etc. the processing components are acquisition, development, utilization and maintenance of personnel. Outputs of HRM system are goal achievement, Quality of work life (QWL), productivity, profits and readiness for change. Feedback provides information to redesign HRM inputs and processing based on the effectiveness of outputs. In addition to this, organizational goals, HRM policies, organization structure, reward system and organization climate are related to internal environment of HRM system. External environment of HRM system includes national politics, economic policy and condition, socio-cultural and technological level. The course tends to develop knowledge and skills in students regarding above mentioned areas essential for productivity improvement and industrial growth.

Course objectives:

General:
After completing the course the student will understand the Human Resource Management System and be able to apply basic principles of personnel management in industrial activities.
Specific:
After completing the course the student will be able to
- Understand Human Resources Management System.
- Describe the acquisition process of human resources in an industry.
- Explain the development processes of human resources in an industry.
- Discuss the motivation processes on human resources in an industry.
- Describe the maintenance aspects of human resources in an industry.

Course content:

Unit 1 Introduction to Personnel/Human Resource Management [3]

1.1 Review of organization & management (from previous course related to industrial management)
1.2 Definitions of personnel/human resource management (HRM)
1.3 Importance of personnel/HR management
1.4 Functions of personnel management
1.5 Principles of personnel management
1.6 Organization chart of a personnel department in an industry
1.7 HRM as a system

Unit 2 Acquisition of Human Resources [9]

2.1 Manpower planning
2.2 Job analysis
2.3 Recruiting sources
2.4 Manpower Selection Process
2.5 Selection devices
2.6 Socializing the new employee
2.7 Manpower selection practices in Nepal

Unit 3 Development of Human Resources [9]

3.1 Definition of training
3.2 Organizational plan for annual activities
3.3 Determining training needs
3.4 Personnel development plan to achieve goals
3.5 Employee training methods
3.6 Foreman or supervisory training
3.7 Career development
3.8 Personal opportunities
Unit 4 Motivation of Human Resources [15]

4.1 Definition of Motivation
4.2 Theories of motivation
4.3 Job design and motivation
4.4 Performance appraisal
4.5 Rewarding productive employee

Unit 5 Maintenance of Human Resources [15]

5.1 Compensation administration
5.2 Benefits and services
5.3 Disciplinary problems facing managers
5.4 Occupational Safety and health
5.5 Trade unions
5.6 Labor relations
5.7 Collective bargaining

Suggestions for Instruction:

1. Lectures
2. Guest speakers from industries
3. Student’s presentations
4. Case studies from Industries
5. Industrial Visits

Note: the above given topics and sub topics are basic guidelines to drive the course for initial stage. The course improvement is a continuous process based on the feedback of the industries. Therefore related authorities are recommended to review the course continuously to address the future needs more effectively.

References:

Entrepreneurship Development
EG 3201 MG

Total: 5 hrs /w
Lecture: 3 hrs/w
Tutorial: hrs/w
Practical: 2 hrs/w
Lab: hrs/w

Course description
This course is designed to provide the knowledge and skills on formulating business plan and managing small business. The entire course deals with assessing, acquiring, and developing entrepreneurial attitude; skills and tools that are necessary to start and run a small enterprise.

Course objectives
After completion of this course students will be able to:

- Understand the concept of business and entrepreneurship
- Explore entrepreneurial competencies
- Analyze business ideas and viability
- Learn to formulate business plan with its integral components
- Manage small business

Course Contents:

Theory

Unit 1: Introduction to business & entrepreneurship [9 Hours]

1. Overview of entrepreneur and entrepreneurship
2. Wage employment, self- employment and business
3. Synopsis of types and forms of enterprises
4. Attitudes, characteristics & skills required to be an entrepreneur
5. Myths about entrepreneurs
6. Overview of MSMEs (Micro, Small and Medium Enterprises) in Nepal
Unit 2: Exploring and developing entrepreneurial competencies [10 Hours]

1. Assessing individual entrepreneurial inclination
2. Assessment of decision making attitudes
3. Risk taking behavior and risk minimization
4. Creativity and innovation in business
5. Enterprise management competencies

Unit 3: Business identification and selection [4 Hours]

1. Sources and method of finding business idea(s)
2. Selection of viable business ideas
3. Legal provisions for MSMEs in Nepal

Unit 4: Business plan formulation [17 Hours]

1. Needs and importance of business plan
2. Marketing plan
 - Description of product or service
 - Targeted market and customers
 - Location of business establishment
 - Estimation of market demand
 - Competitors analysis
 - Estimation of market share
 - Measures for business promotion
3. Business operation plan
 - Process of product or service creation
 - Required fix assets
 - Level of capacity utilization
 - Depreciation & amortization
 - Estimation office overhead and utilities
4. Organizational and human resource plan
 - Legal status of business
 - Management structure
 - Required human resource and cost
 - Roles and responsibility of staff
5. **Financial plan**
 - Working capital estimation
 - Pre-operating expenses
 - Source of investment and financial costs
 - Per unit cost of service or product
 - Unit price and profit/loss estimation of first year

6. **Business plan appraisal**
 - Return on investment
 - Breakeven analysis
 - Risk factors

Unit 5: Small business management [5 Hours]
1. Concept of small business management
2. Market and marketing mix
3. Basic account keeping

Practical

Unit 1: Overview of business & entrepreneurship [2 Hours]
1. Collect business information through interaction with successful entrepreneur

Unit 2: Exploring and developing entrepreneurial competencies [2 Hours]
1. Generate innovative business ideas

Unit 3: Product or service identification and selection [2 Hours]
1. Analyze business ideas using SWOT method

Unit 4: Business plan formulation [22 Hours]
1. Prepare marketing plan
2. Prepare operation plan
3. Prepare organizational and human resource plan
4. Prepare financial plan
5. Appraise business plan
6. Prepare action plan for business startup
Unit 5: Small business management

1. Prepare receipt and payment account
2. Perform costing and pricing of product and service

Reference book:
Automobile Technology IV
EG 3201AE

Year: III
Semester: II

Total: 14 hours/week
Lecture: 4 hours/week
Tutorial: hours/week
Practical: 10 hours/week
Lab: hours/week

Course description:

This course provides knowledge and skills on assessing technical condition of vehicles and safety. It also deals with repair and maintenance, service stations, engine characteristics, super charger and turbocharger.

Course objectives:

After the completing this course the students will be able to:

- Understand technical condition and vehicle safety
- Understand vehicle maintenance and repair
- Be familiar with various service stations including related calculation.
- Calculate various forces and resistances acting on vehicle
- Describe fundamentals of motor vehicle
- Read and interpret traffic rules, regulations and acts.

Course content:

Unit 1: Technical Condition of Vehicles and Safety 8
1.1 General introduction
1.2 Technical condition of brakes and safety
1.3 Aqua planning
1.4 Technical condition of steering and safety
1.5 Technical condition of engine and safety
1.6 Technical condition of transmission and safety
1.7 Technical condition of suspension and safety
1.8 Technical condition of lighting and safety

Unit 2: Concept of Maintenance, Repairs and Wear in Vehicles 12
2.1 Introduction to maintenance
2.2 Importance of maintenance
2.3 Types of maintenance
2.4 Activities of maintenance
2.5 Repair and its purpose
2.6 Overhaul and running repair
2.7. Types of wear: natural and accidental wear:
 • Adhesives wear
 • Oxidative wear
 • Thermal wear
 • Abrasives wear
 • Pitting wear

Unit 3: Concept of Service Station for Repair and Maintenance
4.1. Introduction to automobiles service station
4.2. Types of automobile service stations
4.3. Highway service station and its characteristics of works
4.4. Small service station and its characteristics
4.5. Medium service station and its characteristics of works
4.6. Big service station and its characteristics of works
4.7. Special serviced station
4.8. References and calculations
4.9. Calculation of working post, number of workers and area of section of the workshop layout

Unit 4: Concept of Motor Vehicles
4.1. Forces acting on motor vehicle
 • Tractive force
 • Resistance force
4.2. Transmission efficiency
4.3. Traction characteristics of motor vehicle
4.4. Road resistance
4.5. Rolling resistance
4.6. Air resistance
4.7. Fuel economy of a motor vehicle
4.8. Fuel economy characteristics
4.9. Fuel consumption equation

Unit 5: Fundamental of Motor Vehicles
5.1. General on braking dynamics
5.2. Braking distance
5.3. Cross country ability of a motor vehicle
 • General on cross country ability with examples of 4×4, 6×6 types of wheel formula
5.4. Smoothness of run of a motor vehicle
 • Introduction
 • Characteristics of the smoothness of run
 • Effects of design factors on smooth running: effects of advantage of independent suspension, pneumatic suspension, torsion suspension
5.5. Effective (brake) Characteristics of Engine
5.6. Effective braked power
5.7. Mechanical losses
5.8. Specific effective fuel consumption

Unit 6: Driving
6.1. Traffic rules and regulation
6.2. Traffic signs and symbols
6.3. Plain driving
6.4. Night driving
6.5. Hill driving
6.6. City driving
6.7. Reverse
6.8. Parking

Unit 10: Motor Vehicles Acts and Rules

Reference books:
3. T.R. Banga, Nathu Singh, A text book of Automobile Engineering,
4. Frederick C. Nash, Kalman Banitz, Automotive Technology
5. K. M. Moed, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
7. P. S. Gill, A Text book og Automobile Engineering Volume I & II, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
8. Dr. Kripal Singh, Automobile Engineering Volume I & II, Standard Publishers Distributors, Naisarak, Post box 1066, Delhi, 110006
10. R.K. Singal, Automobile Engineering, S. K. Kataria and sons, Ansari Road, Daryagunj, New Delhi, 110002
12. G.B. S. Narang, Automobile Engineering, Khanna Publishers
15. V.M. Domkundwar, A Course in International Combustion Engine, Dhanpat Rai & Company, New Delhi
16. H. Gerscher, Technology for Automotive Trade Volume 1 & 2, GTZ

Practical
1. Fault finding, repair and maintenance of chassis, frame and control system.
2. Fault finding, repair and maintenance and overhaul of Petrol vehicle.
3. Fault finding, repair and maintenance and overhaul of Diesel vehicle.
4. Fault finding, repair and maintenance of vehicle electrical and electronic system.
5. Diagnose, analyze and testing of automobile vehicle by using various testing devices, equipment, analyzer and scanner.

Vehicle Driving Practice
EG 3202 AE

Year: III
Semester: II

Total: 3 hours/week
Lecture: hours/week
Tutorial: hours/week
Practical: 3 hours/week
Lab: hours/week

Course description:

This course is designed to help the students in acquainting knowledge and skills on vehicle driving.

Course objectives:

After the completing this course the students will be able to:

• Demonstrate the skills required for the vehicle driving.
• Apply control system while vehicle driving.
• Perform pre inspection, during and post check up of vehicle to drive.

Course content:

Practical

1. Perform pre starting check up of vehicle.
2. Start the engine
3. Perform pre driving check up of the vehicle.
4. Control steering practice in the field.
5. Carry out driving practice from stationary.
6. Perform running practice in first gear on the field.
7. Perform running practice in second gear on the field.
8. Perform full driving practices on the field.
9. Perform full driving practice on the road.
10. Perform straight reverse driving practice.
11. Perform bend reverse driving practice.
12. Perform bent reverse parking practice in various patterns.
13. Read traffic Rules and regulations.
Industrial Attachment
EG 3203 AE

Year: III
Semester: II

Total: 12 hours/week
Lecture: hours/week
Tutorial: hours/week
Practical: 12 hours/week
Lab: hours/week

Course description:

The students will be assigned to various auto-workshop/service stations on a full time basis as a trainee or intern. At the end of the course, students will submit a report conforming to a standardized format along with the daily diary. Industrial attachment shall consist of exposure of world of work to learn skills and techniques in design, operation, diagnosis, maintenance and repair of automobile vehicle based on the nature of the interned organization.

Course objectives:

After completing the course the students will be able to:

- Match the technical skills learn in the institute with the needs of the employer.
- Increase self-confidence to face the real world of work.
- Develop the strong linkage between industry and institution.
- Ensure the standard of the training as per the market demand.
- Sensitize with modern and new technologies applied in the industry.

Course content:

The report will be prepared on the basis of the following guidelines.

1. Profile of the industry including workshop layout.
2. Basic feature of the workshop
3. General problems of the workshop/industry
4. Special technological aspect learnt during the internship/attachment.
5. Report on selected technological aspects.
6. Suggestions for improvement of selected aspect of the problems (store management, layout improvement, work study etc).
7. Daily diary maintenance

Experts involved in Curricula Development

I. Diploma in Mechanical Engineering (DME), 2008

- Mr. Shreekar Pradhan- IOE, Pulchok, Coordinator- sub committee (General Language/Technology)
- Mr. Sangeet Lal Nakarmi- IOE, Pulchok
- Mr. Bahadur Galami- IOE, Pulchok
- Mr. Janak Tuladhar- IOE, Pulchok
- Mr. Nripa Dhoj Khadka- IOE, Pulchok
- Dr. Arbindra Kumar Mishra- IOE, Pulchok
- Mr. Mahesh Chandra Luintel- IOE, Pulchok, Coordinator- sub committee (Drawing)
- Mr. N. R. Bhattarai - IOE, Pulchok
- Mr. Prasanta Ghimire- IOE, Pulchok
- Mr. Nawaraj Bhattarai- IOE, Pulchok, Coordinator- sub committee (Design and Project)
- Mr. S.S. Adiga - IOE, Pulchok
- Mr. Ram Chandra Sapkota- IOE, Pulchok, Coordinator- sub committee (Engineering science)
- Dr. Riddhi Ratna Sthapit- IOE, Pulchok, Coordinator- sub committee (Workshop Technology / Manufacturing Process)
- Mr. Biswa Nath Rajbahak- IOE, Pulchok
- Mr. Ramesh Shakya- IOE, Pulchok
- Mr. Mohan Singh Maharjan- IOE, Pulchok
- Mr. Luza Shrestha- IOE, Pulchok
- Mr. Kabir Maharjan- IOE, Pulchok
- Mr. Triratna Bajracharya- IOE, Pulchok, Coordinator- sub committee (Thermo-fluid)
- Dr. Rajendra Shrestha- IOE, Pulchok
- Dr. B.B. Ale- IOE, Pulchok
- Mr. Narayan Prasad Shrestha- IOE, Pulchok
- Dr. C. B. Joshi- IOE, Pulchok
- Mr. Rabindra Bhattarai- IOE, Pulchok
- Mr. Shreeraj Shakya- IOE, Pulchok, Coordinator- sub committee (Management)
- Mr. Siddheswor Man Shrestha - IOE, Pulchok
- Mr. Amrit Joshi - AEC, Sitapaila
- Mr. Parishwar Acharya - AEC, Sitapaila
- Ms. Rita Nemkul - AEC, Sitapaila
- Mr. Parishwar Acharya - AEC, Sitapaila
- Mr. Shiva Shankar Ghimire - CTEVT
- Mr. Jeeban Chandra Dahal - CTEVT
- Mr. Sagar Mani Lamsal - CTEVT
- Mr. Mister Kanta Mainili – CTEVT
II. Diploma in Automobile Engineering (DAE), 2013:

- Dr. Riddhi Ratna Sthapit - IOE, Pulchok
- Mr. Sunny Pradhan, IOE, Senior Instructor, IOE Thapathali Campus
- Mr. Laxman Palikhel, HOD, Automobile Section, IOE Thapathali Campus
- Mr. Prem Nakarmi, Senior Instructor, IOE Thapathali Campus
- Mr. Binay Manandhar, Senior Instructor, IOE Thapathali Campus
- Mr. Ajay Kumar Singh, HOD, Automobile, Korea Nepal Institute for Technology, Butwal
- Raj Kumar Choudhary, Senior Instructor, Korea Nepal Institute for Technology, Butwal
- Mr. Prakash Shakya, Hyundai Motor Service
- Mr. Rudra Mani Ghimire, IOE Pulchok
- Mr. Chandra Bhakta Nakarmi - CTEVT
- Mr. Jeeban Chandra Dahal - CTEVT
- Mr. Mister Kanta Mainili - CTEVT
- Mr. Binod Badal - CTEVT
- Mr. Hari Shankar Bhandari - CTEVT
